
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5203174/publications.pdf Version: 2024-02-01

ΖΗΙ-ΓΙ ΜΑΝ

#	Article	IF	CITATIONS
1	Wheat gluten-stabilized high internal phase emulsions as mayonnaise replacers. Food Hydrocolloids, 2018, 77, 168-175.	5.6	167
2	Complexation of resveratrol with soy protein and its improvement on oxidative stability of corn oil/water emulsions. Food Chemistry, 2014, 161, 324-331.	4.2	141
3	Plant protein-based delivery systems for bioactive ingredients in foods. Food and Function, 2015, 6, 2876-2889.	2.1	138
4	Associative interactions between chitosan and soy protein fractions: Effects of pH, mixing ratio, heat treatment and ionic strength. Food Research International, 2014, 55, 207-214.	2.9	104
5	Enhanced Physical and Oxidative Stabilities of Soy Protein-Based Emulsions by Incorporation of a Water-Soluble Stevioside–Resveratrol Complex. Journal of Agricultural and Food Chemistry, 2013, 61, 4433-4440.	2.4	98
6	Contribution of Long Fibrils and Peptides to Surface and Foaming Behavior of Soy Protein Fibril System. Langmuir, 2016, 32, 8092-8101.	1.6	98
7	Colloidal complexation of zein hydrolysate with tannic acid: Constructing peptides-based nanoemulsions for alga oil delivery. Food Hydrocolloids, 2016, 54, 40-48.	5.6	94
8	Nonlinear Surface Dilatational Rheology and Foaming Behavior of Protein and Protein Fibrillar Aggregates in the Presence of Natural Surfactant. Langmuir, 2016, 32, 3679-3690.	1.6	93
9	Synergistic Foaming and Surface Properties of a Weakly Interacting Mixture of Soy Glycinin and Biosurfactant Stevioside. Journal of Agricultural and Food Chemistry, 2014, 62, 6834-6843.	2.4	86
10	Responsive Emulsion Gels with Tunable Properties Formed by Self-Assembled Nanofibrils of Natural Saponin Glycyrrhizic Acid for Oil Structuring. Journal of Agricultural and Food Chemistry, 2017, 65, 2394-2405.	2.4	83
11	Synergistic interfacial properties of soy protein–stevioside mixtures: Relationship to emulsion stability. Food Hydrocolloids, 2014, 39, 127-135.	5.6	78
12	Thermoresponsive structured emulsions based on the fibrillar self-assembly of natural saponin glycyrrhizic acid. Food and Function, 2017, 8, 75-85.	2.1	75
13	Food-Grade Emulsions and Emulsion Gels Prepared by Soy Protein–Pectin Complex Nanoparticles and Glycyrrhizic Acid Nanofibrils. Journal of Agricultural and Food Chemistry, 2020, 68, 1051-1063.	2.4	75
14	Large amplitude oscillatory shear (LAOS) for nonlinear rheological behavior of heterogeneous emulsion gels made from natural supramolecular gelators. Food Research International, 2021, 140, 110076.	2.9	64
15	Self-Assembled Egg Yolk Peptide Micellar Nanoparticles as a Versatile Emulsifier for Food-Grade Oil-in-Water Pickering Nanoemulsions. Journal of Agricultural and Food Chemistry, 2019, 67, 11728-11740.	2.4	55
16	Formation of Complex Interface and Stability of Oil-in-Water (O/W) Emulsion Prepared by Soy Lipophilic Protein Nanoparticles. Journal of Agricultural and Food Chemistry, 2013, 61, 7838-7847.	2.4	53
17	Zein/tannic acid complex nanoparticlesâ€stabilised emulsion as a novel delivery system for controlled release of curcumin. International Journal of Food Science and Technology, 2017, 52, 1221-1228.	1.3	52
18	Long-Lived and Thermoresponsive Emulsion Foams Stabilized by Self-Assembled Saponin Nanofibrils and Fibrillar Network. Langmuir, 2018, 34, 3971-3980.	1.6	52

#	Article	IF	CITATIONS
19	Multiple Water-in-Oil-in-Water Emulsion Gels Based on Self-Assembled Saponin Fibrillar Network for Photosensitive Cargo Protection. Journal of Agricultural and Food Chemistry, 2017, 65, 9735-9743.	2.4	47
20	Formation and dynamic interfacial adsorption of glycinin/chitosan soluble complex at acidic pH: Relationship to mixed emulsion stability. Food Hydrocolloids, 2013, 31, 85-93.	5.6	44
21	Enhanced water resistance properties of bacterial cellulose multilayer films by incorporating interlayers of electrospun zein fibers. Food Hydrocolloids, 2016, 61, 269-276.	5.6	41
22	Nanocomposites of Bacterial Cellulose Nanofibrils and Zein Nanoparticles for Food Packaging. ACS Applied Nano Materials, 2020, 3, 2899-2910.	2.4	38
23	The physicochemical properties, in vitro binding capacities and in vivo hypocholesterolemic activity of soluble dietary fiber extracted from soy hulls. Food and Function, 2016, 7, 4830-4840.	2.1	37
24	Characterization of complexes of soy protein and chitosan heated at low pH. LWT - Food Science and Technology, 2013, 50, 657-664.	2.5	36
25	Controlled formation and stabilization of nanosized colloidal suspensions by combination of soy protein and biosurfactant stevioside as stabilizers. Food Hydrocolloids, 2016, 52, 317-328.	5.6	35
26	Hierarchical high internal phase emulsions and transparent oleogels stabilized by quillaja saponin-coated nanodroplets for color performance. Food and Function, 2017, 8, 823-831.	2.1	34
27	Heat stability and rheological properties of concentrated soy protein/egg white protein composite microparticle dispersions. Food Hydrocolloids, 2020, 100, 105449.	5.6	34
28	Highly stable and thermo-responsive gel foams by synergistically combining glycyrrhizic acid nanofibrils and cellulose nanocrystals. Journal of Colloid and Interface Science, 2021, 587, 797-809.	5.0	34
29	A Natural Supramolecular Saponin Hydrogelator for Creation of Ultrastable and Thermostimulable Foodâ€Grade Foams. Advanced Materials Interfaces, 2019, 6, 1900417.	1.9	32
30	Chitin Microfibers Reinforce Soy Protein Gels Cross-Linked by Transglutaminase. Journal of Agricultural and Food Chemistry, 2014, 62, 4434-4442.	2.4	31
31	Controlled Hydrophobic Biosurface of Bacterial Cellulose Nanofibers through Self-Assembly of Natural Zein Protein. ACS Biomaterials Science and Engineering, 2017, 3, 1595-1604.	2.6	31
32	pH switchable Pickering emulsion based on soy peptides functionalized calcium phosphate particles. Food Hydrocolloids, 2017, 70, 219-228.	5.6	31
33	Slowing the Starch Digestion by Structural Modification through Preparing Zein/Pectin Particle Stabilized Water-in-Water Emulsion. Journal of Agricultural and Food Chemistry, 2018, 66, 4200-4207.	2.4	29
34	Salt reduction in semi-solid food gel via inhomogeneous distribution of sodium-containing coacervate: Effect of gum arabic. Food Hydrocolloids, 2020, 109, 106102.	5.6	27
35	Modulation of the surface properties of protein particles by a surfactant for stabilizing foams. RSC Advances, 2016, 6, 66018-66026.	1.7	25
36	Tunable assembly of hydrophobic protein nanoparticle at fluid interfaces with tannic acid. Food Hydrocolloids, 2017, 63, 364-371.	5.6	24

#	Article	IF	CITATIONS
37	Gelâ€like emulsions prepared with zein nanoparticles produced through phase separation from acetic acid solutions. International Journal of Food Science and Technology, 2017, 52, 2670-2676.	1.3	22
38	Structural characterization of pectin-bismuth complexes and their aggregation in acidic conditions. International Journal of Biological Macromolecules, 2020, 154, 788-794.	3.6	22
39	Modulation of Gut Microbiota by Soybean 7S Globulin Peptide That Involved Lipopolysaccharide–Peptide Interaction. Journal of Agricultural and Food Chemistry, 2019, 67, 2201-2211.	2.4	18
40	Gamma/alphaâ€zein hydrolysates as oral delivery vehicles: Enhanced physicochemical stability and <i>inÂvitro</i> bioaccessibility of curcumin. International Journal of Food Science and Technology, 2018, 53, 1622-1630.	1.3	17
41	One-pot ultrasonic cavitational emulsification of phytosterols oleogel-based flavor emulsions and oil powder stabilized by natural saponin. Food Research International, 2021, 150, 110757.	2.9	17
42	Glycyrrhizic acid: self-assembly and applications in multiphase food systems. Current Opinion in Food Science, 2022, 43, 107-113.	4.1	17
43	Preparation and characterisation of surfaceâ€active pectin from soya hulls by phosphateâ€assisted subcritical water combined with ultrasonic treatment. International Journal of Food Science and Technology, 2016, 51, 61-68.	1.3	15
44	Interaction of Soybean 7S Globulin Peptide with Cell Membrane Model via Isothermal Titration Calorimetry, Quartz Crystal Microbalance with Dissipation, and Langmuir Monolayer Study. Journal of Agricultural and Food Chemistry, 2018, 66, 4913-4922.	2.4	15
45	Corn protein hydrolysate as a new structural modifier for soybean protein isolate based O/W emulsions. LWT - Food Science and Technology, 2020, 118, 108763.	2.5	15
46	Formation of protein oleogels via capillary attraction of engineered protein particles. Food Hydrocolloids, 2022, 133, 107912.	5.6	15
47	Fabrication and delivery properties of soy Kunitz trypsin inhibitor nanoparticles. RSC Advances, 2016, 6, 85621-85633.	1.7	14
48	Synergistic effect of glycyrrhizic acid and cellulose nanocrystals for oil-water interfacial stabilization. Food Hydrocolloids, 2021, 120, 106888.	5.6	14
49	Tailoring structure and properties of long-lived emulsion foams stabilized by a natural saponin glycyrrhizic acid: Role of oil phase. Food Research International, 2021, 150, 110733.	2.9	13
50	Stability and antimicrobial property of soy protein/chitosan mixed emulsion at acidic condition. Food and Function, 2013, 4, 1394.	2.1	12
51	Salt reduction in liquid/semi-solid foods based on the mucopenetration ability of gum arabic. Food and Function, 2019, 10, 4090-4101.	2.1	12
52	Induction heating by magnetic microbeads for pasteurization of liquid whole eggs. Journal of Food Engineering, 2020, 284, 110079.	2.7	12
53	Recent Advances and Applications of Plant-Based Bioactive Saponins in Colloidal Multiphase Food Systems. Molecules, 2021, 26, 6075.	1.7	12
54	Robust and highly adaptable high internal phase gel emulsions stabilized solely by a natural saponin hydrogelator glycyrrhizic acid. Food and Function, 2022, 13, 280-289.	2.1	11

#	Article	IF	CITATIONS
55	Surgical treatment of a retroperitoneal benign tumor surrounding important blood vessels by fractionated resection: A case report and review of the literature. Oncology Letters, 2016, 11, 3259-3264.	0.8	10
56	Non-covalent reconfigurable microgel colloidosomes with a well-defined bilayer shell. Chemical Science, 2022, 13, 6205-6216.	3.7	10
57	Amphiphilic zein hydrolysate as a delivery vehicle: The role of xanthophylls. LWT - Food Science and Technology, 2017, 79, 463-470.	2.5	9
58	Salt reduction in bread <i>via</i> enrichment of dietary fiber containing sodium and calcium. Food and Function, 2021, 12, 2660-2671.	2.1	9
59	Novel functional properties and applications of steviol glycosides in foods. Current Opinion in Food Science, 2022, 43, 91-98.	4.1	9
60	Adsorption and foaming properties of edible egg yolk peptide nanoparticles: Effect of particle aggregation. Current Research in Food Science, 2021, 4, 270-278.	2.7	8
61	pH-dependent micellar properties of edible biosurfactant steviol glycosides and their oil-water interfacial interactions with soy proteins. Food Hydrocolloids, 2022, 126, 107476.	5.6	7
62	Structuring of Edible Liquid Oil into Smart Thermo-Triggered Soft Matters for Controlled Bioactive Delivery. Journal of Agricultural and Food Chemistry, 2022, 70, 309-318.	2.4	7
63	Effects of Î ³ -zein peptides on lipid membrane organization: Quartz crystal microbalance with dissipation and Langmuir monolayer studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 574, 86-93.	2.3	3