Andreas Amann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5203148/publications.pdf

Version: 2024-02-01

87	2,923 citations	172207 29	182168 51
papers	citations	h-index	g-index
90 all docs	90 docs citations	90 times ranked	1979 citing authors
u. 4000	acco citations		

#	Article	IF	CITATIONS
1	Dynamics of Targeted Ransomware Negotiation. IEEE Access, 2022, 10, 32836-32844.	2.6	6
2	Tapered nonlinear vibration energy harvester for powering Internet of Things. Applied Energy, 2021, 283, 116267.	5.1	38
3	Multifunctionality in a reservoir computer. Chaos, 2021, 31, 013125.	1.0	12
4	Symmetry kills the square in a multifunctional reservoir computer. Chaos, 2021, 31, 073122.	1.0	6
5	Border-collision bifurcations in a driven time-delay system. Chaos, 2020, 30, 023121.	1.0	4
6	Dynamics of two mutually coupled semiconductor lasers in low coupling regions. , 2018, , .		0
7	Dynamics of two identical mutually delay-coupled semiconductor lasers in photonic integrated circuits. Applied Optics, 2018, 57, E37.	0.9	8
8	Asymmetric Pentagonal Metal Meshes for Flexible Transparent Electrodes and Heaters. ACS Applied Materials & Samp; Interfaces, 2017, 9, 4932-4940.	4.0	80
9	Emergence of stable two-colour states in mutually delay-coupled lasers. EPJ Web of Conferences, 2017, 139, 00010.	0.1	4
10	Magnetic Tuning of Nonlinear MEMS Electromagnetic Vibration Energy Harvester. Journal of Microelectromechanical Systems, 2017, 26, 539-549.	1.7	35
11	High Figure of Merit Nonlinear Microelectromagnetic Energy Harvesters for Wideband Applications. Journal of Microelectromechanical Systems, 2017, 26, 273-282.	1.7	29
12	Bifurcation and frequency analysis of mutually delay-coupled semiconductor lasers in photonic integrated circuits. , 2017 , , .		0
13	Frequency and stability analysis of two mutually delay-coupled semiconductor lasers in photonic integrated circuits. , 2017, , .		O
14	Influence of combined fundamental potentials in a nonlinear vibration energy harvester. Scientific Reports, 2016, 6, 37292.	1.6	12
15	Frequency adjustable MEMS vibration energy harvester. Journal of Physics: Conference Series, 2016, 757, 012037.	0.3	7
16	Surfing the High Energy Output Branch of Nonlinear Energy Harvesters. Physical Review Letters, 2016, 117, 197701.	2.9	83
17	Combined Effect of Bistability and Mechanical Impact on the Performance of a Nonlinear Electromagnetic Vibration Energy Harvester. IEEE/ASME Transactions on Mechatronics, 2016, 21, 727-739.	3.7	39
18	MEMS based Nonlinear Monostable Electromagnetic Vibrational Energy Harvester for Wider Bandwidth. Journal of Physics: Conference Series, 2015, 660, 012115.	0.3	1

#	Article	IF	CITATIONS
19	Dimensional and defectivity nanometrology of directed self-assembly patterns. Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 267-270.	0.8	3
20	Interplay between electrical and mechanical domains in a high performance nonlinear energy harvester. Smart Materials and Structures, 2015, 24, 122001.	1.8	15
21	Absence of Evidence ≠Evidence of Absence: Statistical Analysis of Inclusions in Multiferroic Thin Films. Scientific Reports, 2015, 4, 5712.	1.6	23
22	Pulse repetition-frequency multiplication in a coupled cavity passively mode-locked semiconductor lasers. Applied Physics B: Lasers and Optics, 2015, 118, 539-548.	1.1	17
23	A nonlinear stretching based electromagnetic energy harvester on FR4 for wideband operation. Smart Materials and Structures, 2015, 24, 015013.	1.8	68
24	A bistable electromagnetic micro-power generator using FR4-based folded arm cantilever. Sensors and Actuators A: Physical, 2015, 227, 39-47.	2.0	24
25	Mapping self-assembled dots and line arrays by image analysis for quantification of defect density and alignment. Proceedings of SPIE, 2015, , .	0.8	0
26	Defect analysis and alignment quantification of line arrays prepared by directed self-assembly of a block copolymer. , 2014 , , .		3
27	Order and defectivity nanometrology by image processing and analysis of sub-20 nm BCPs features for lithographic applications. Proceedings of SPIE, 2014, , .	0.8	0
28	Experimental classification of dynamical regimes in optically injected lasers. Optics Express, 2014, 22, 21701.	1.7	11
29	FR4 Based Bistable Electromagnetic Vibration Energy Harvester. Procedia Engineering, 2014, 87, 767-770.	1.2	7
30	Multistabilities and symmetry-broken one-color and two-color states in closely coupled single-mode lasers. Physical Review E, 2014, 89, 032919.	0.8	18
31	Magnetic Fieldâ€Induced Ferroelectric Switching in Multiferroic Aurivillius Phase Thin Films at Room Temperature. Journal of the American Ceramic Society, 2013, 96, 2339-2357.	1.9	154
32	An odd-number limitation of extended time-delayed feedback control in autonomous systems. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20120463.	1.6	18
33	Cascading effects in the moving Preisach model. , 2013, , .		0
34	Characterization of memory states of the Preisach operator with stochastic inputs. Physica B: Condensed Matter, 2012, 407, 1404-1411.	1.3	2
35	On-off intermittency in an optically injected semiconductor laser. Physical Review E, 2012, 85, 056204.	0.8	10
36	Analytical Limitation for Time-Delayed Feedback Control in Autonomous Systems. Physical Review Letters, 2012, 109, 154101.	2.9	44

#	Article	IF	CITATIONS
37	Wavelength switching dynamics of two-colour semiconductor lasers with optical injection and feedback. Semiconductor Science and Technology, 2012, 27, 094001.	1.0	24
38	Noise-Assisted Crystallization of Opal Films. Advanced Functional Materials, 2012, 22, 1812-1821.	7.8	30
39	Bistability and All-Optical Memory in Dual-Mode Diode Lasers With Time-Delayed Optical Feedback. IEEE Photonics Journal, 2012, 4, 95-103.	1.0	10
40	Emerging Meso- and Macroscales from Synchronization of Adaptive Networks. Physical Review Letters, 2011, 107, 234103.	2.9	73
41	Bistability in an injection locked two color laser with dual injection. Applied Physics Letters, 2011, 99, .	1.5	19
42	Nonlinear dynamics of non-equilibrium holes in p-type modulation-doped GaInNAs/GaAs quantum wells. Nanoscale Research Letters, 2011, 6, 191.	3.1	2
43	Bistability in a two-colour semiconductor laser with dual injection. , $2011, \ldots$		O
44	Wavelength switching performance of single- and dual-contact two-mode semiconductor lasers with current modulation. Journal of Optics (United Kingdom), 2011, 13, 125501.	1.0	3
45	Design and applications of discrete mode Fabry-Perot diode lasers. Photonics and Nanostructures - Fundamentals and Applications, 2010, 8, 218-227.	1.0	6
46	Optical Synthesis of Terahertz and Millimeter-Wave Frequencies With Discrete Mode Diode Lasers. IEEE Transactions on Microwave Theory and Techniques, 2010, 58, 3083-3087.	2.9	16
47	Dynamics of electronic transport in a semiconductor superlattice with a shunting side layer. Physical Review B, 2009, 79, .	1.1	5
48	Antiphase dynamics in a multimode semiconductor laser with optical injection. Physical Review A, 2009, 79, .	1.0	27
49	Mechanism of Synchronization in Frequency Dividers. IEEE Transactions on Circuits and Systems I: Regular Papers, 2009, 56, 190-199.	3.5	20
50	Control of reflectivity and stop bands in a Bragg stack with a four-layer period. Optics Communications, 2009, 282, 867-871.	1.0	1
51	All-optical memory based on the injection locking bistability of a two-color laser diode. Optics Express, 2009, 17, 6293.	1.7	56
52	Gap solitons in spatiotemporal photonic crystals. Physical Review A, 2008, 77, .	1.0	15
53	Gap solitons in nonlinear spatiotemporal photonic crystals and gratings. , 2008, , .		0
54	Stochastic resonance in photonic crystal growth. , 2007, 6603, 480.		3

#	Article	IF	CITATIONS
55	Design of Single-Mode and Two-Color FabryPÉrot Lasers With Patterned Refractive Index. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13, 1157-1163.	1.9	29
56	Some basic remarks on eigenmode expansions of time-delay dynamics. Physica A: Statistical Mechanics and Its Applications, 2007, 373, 191-202.	1.2	65
57	Dynamics of light propagation in spatiotemporal dielectric structures. Physical Review E, 2007, 75, 046607.	0.8	124
58	Noise-induced current oscillations in superlattices: from stationary to moving domains. AIP Conference Proceedings, 2007, , .	0.3	0
59	Synchronizing weighted complex networks. Chaos, 2006, 16, 015106.	1.0	55
60	Synchronization in dynamical networks: Evolution along commutative graphs. Physical Review E, 2006, 74, 016102.	0.8	91
61	Noise-Induced Front Motion: Signature of a Global Bifurcation. Physical Review Letters, 2006, 96, 244104.	2.9	73
62	Spectral manipulation in Fabry-Perot lasers: perturbative inverse scattering approach. Journal of the Optical Society of America B: Optical Physics, 2006, 23, 1046.	0.9	30
63	Inverse scattering approach to multiwavelength Fabry-Pérot laser design. Physical Review A, 2006, 74, .	1.0	17
64	NOISE-INDUCED OSCILLATIONS AND THEIR CONTROL IN SEMICONDUCTOR SUPERLATTICES. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2006, 16, 1701-1710.	0.7	18
65	Synchronization is Enhanced in Weighted Complex Networks. Physical Review Letters, 2005, 94, 218701.	2.9	418
66	Bifurcations in a System of Interacting Fronts. Journal of Statistical Physics, 2005, 119, 1069-1138.	0.5	19
67	Noise-induced patterns in semiconductor nanostructures and time-delayed feedback control. AIP Conference Proceedings, 2005, , .	0.3	0
68	Control of noise-induced oscillations in superlattices by delayed feedback. AIP Conference Proceedings, 2005, , .	0.3	1
69	Coupled lateral and vertical electron dynamics in semiconductor superlattices. Physical Review B, 2005, 72, .	1.1	5
70	Synchronization in Complex Networks with Age Ordering. Physical Review Letters, 2005, 94, 138701.	2.9	167
71	Mean-field approximation of time-delayed feedback control of noise-induced oscillations in the Van der Pol system. Europhysics Letters, 2005, 71, 366-372.	0.7	54
72	Self-stabilization of chaotic domain oscillations in superlattices by time-delayed feedback control. Semiconductor Science and Technology, 2004, 19, S34-S36.	1.0	8

#	Article	IF	CITATIONS
73	Improvement of time-delayed feedback control by periodic modulation: Analytical theory of Floquet mode control scheme. Physical Review E, 2003, 67, 026222.	0.8	44
74	Hybrid Model for Chaotic Front Dynamics: From Semiconductors to Water Tanks. Physical Review Letters, 2003, 91, 066601.	2.9	31
75	Self-stabilization of high-frequency oscillations in semiconductor superlattices by time-delay autosynchronization. Physical Review E, 2003, 68, 066208.	0.8	39
76	Time-delay autosynchronization of the spatiotemporal dynamics in resonant tunneling diodes. Physical Review E, 2003, 68, 026204.	0.8	53
77	High-frequency impedance of driven superlattices. Journal of Applied Physics, 2002, 92, 3137-3140.	1.1	10
78	Control of the dipole domain propagation in a GaAs/AlAs superlattice with a high-frequency field. Physical Review B, 2002, 65, .	1.1	20
79	Chaotic front dynamics in semiconductor superlattices. Physical Review B, 2002, 65, .	1.1	46
80	<title>Synchronization of dipole domains in GHz-driven superlattices</title> ., 2002,,.		1
81	<title>From bistability to spatio-temporal chaos in a resonant-tunneling diode</title> ., 2002, 5023, 330.		0
82	Comparison of time-delayed feedback schemes for spatiotemporal control of chaos in a reaction-diffusion system with global coupling. Physical Review E, 2002, 66, 016213.	0.8	74
83	Giant Improvement of Time-Delayed Feedback Control by Spatio-Temporal Filtering. Physical Review Letters, 2002, 89, 074101.	2.9	95
84	Transverse spatio-temporal instabilities in the double barrier resonant tunneling diode. Physica B: Condensed Matter, 2002, 314, 113-116.	1.3	17
85	Tripole current oscillations in superlattices. Physica B: Condensed Matter, 2002, 314, 404-408.	1.3	14
86	Dynamic scenarios of multistable switching in semiconductor superlattices. Physical Review E, 2001, 63, 066207.	0.8	46
87	Field domains in semiconductor superlattices: Dynamic scenarios of multistable switching. Springer Proceedings in Physics, 2001, , 801-802.	0.1	1