Wolfgang Lukowitz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5202864/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A game of hide and peek. Developmental Cell, 2021, 56, 3037-3039.	7.0	Ο
2	EMS Mutagenesis of Arabidopsis Seeds. Methods in Molecular Biology, 2020, 2122, 15-23.	0.9	5
3	Genetic Screens to Target Embryo and Endosperm Pathways in Arabidopsis and Maize. Methods in Molecular Biology, 2020, 2122, 3-14.	0.9	1
4	Constitutive signaling activity of a receptor-associated protein links fertilization with embryonic patterning in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5795-5804.	7.1	39
5	Regulation of Stomatal Immunity by Interdependent Functions of a Pathogen-Responsive MPK3/MPK6 Cascade and Abscisic Acid. Plant Cell, 2017, 29, 526-542.	6.6	146
6	Maternal control of embryogenesis by MPK6 and its upstream MKK4/MKK5 in Arabidopsis. Plant Journal, 2017, 92, 1005-1019.	5.7	66
7	A Genetic Screen for Mutations Affecting Cell Division in the Arabidopsis thaliana Embryo Identifies Seven Loci Required for Cytokinesis. PLoS ONE, 2016, 11, e0146492.	2.5	24
8	The PLETHORA Gene Regulatory Network Guides Growth and Cell Differentiation in Arabidopsis Roots. Plant Cell, 2016, 28, 2937-2951.	6.6	127
9	Going mainstream: How is the body axis of plants first initiated in the embryo?. Developmental Biology, 2016, 419, 78-84.	2.0	13
10	Embryos, Camera, Laser, Action!. Developmental Cell, 2015, 34, 137-138.	7.0	1
11	Downregulation of GAUT12 in Populus deltoides by RNA silencing results in reduced recalcitrance, increased growth and reduced xylan and pectin in a woody biofuel feedstock. Biotechnology for Biofuels, 2015, 8, 41.	6.2	133
12	EDR1 Physically Interacts with MKK4/MKK5 and Negatively Regulates a MAP Kinase Cascade to Modulate Plant Innate Immunity. PLoS Genetics, 2014, 10, e1004389.	3.5	136
13	Loss of Arabidopsis GAUT12/IRX8 causes anther indehiscence and leads to reduced G lignin associated with altered matrix polysaccharide deposition. Frontiers in Plant Science, 2014, 5, 357.	3.6	50
14	Different Auxin Response Machineries Control Distinct Cell Fates in the Early Plant Embryo. Developmental Cell, 2012, 22, 211-222.	7.0	176
15	Axis formation in Arabidopsis – transcription factors tell their side of the story. Current Opinion in Plant Biology, 2012, 15, 4-9.	7.1	19
16	Taking the very first steps: from polarity to axial domains in the early Arabidopsis embryo. Journal of Experimental Botany, 2011, 62, 1687-1697.	4.8	37
17	The RWP-RK Factor GROUNDED Promotes Embryonic Polarity by Facilitating YODA MAP Kinase Signaling. Current Biology, 2011, 21, 1268-1276.	3.9	82
18	The GATA Factor HANABA TARANU Is Required to Position the Proembryo Boundary in the Early Arabidopsis Embryo. Developmental Cell, 2010, 19, 103-113.	7.0	64

WOLFGANG LUKOWITZ

#	Article	IF	CITATIONS
19	Novel and Expanded Roles for MAPK Signaling in <i>Arabidopsis</i> Stomatal Cell Fate Revealed by Cell Type–Specific Manipulations Â. Plant Cell, 2009, 21, 3506-3517.	6.6	179
20	Microtubule-Associated Kinase-like Protein RUNKEL Needed for Cell Plate Expansion in Arabidopsis Cytokinesis. Current Biology, 2009, 19, 518-523.	3.9	44
21	Microtubule-Associated Kinase-like Protein RUNKEL Needed for Cell Plate Expansion in Arabidopsis Cytokinesis. Current Biology, 2009, 19, 536.	3.9	0
22	Paternal Control of Embryonic Patterning in <i>Arabidopsis thaliana</i> . Science, 2009, 323, 1485-1488.	12.6	298
23	Talk global, act local—patterning the Arabidopsis embryo. Current Opinion in Plant Biology, 2008, 11, 28-33.	7.1	36
24	A conserved role for kinesin-5 in plant mitosis. Journal of Cell Science, 2007, 120, 2819-2827.	2.0	94
25	Embryonic Patterning inArabidopsis thaliana. Annual Review of Cell and Developmental Biology, 2007, 23, 207-236.	9.4	163
26	Apical–basal polarity: why plant cells don't standon their heads. Trends in Plant Science, 2006, 11, 12-14.	8.8	37
27	Auxin and root initiation in somatic embryos of Arabidopsis. Plant Cell Reports, 2006, 26, 1-11.	5.6	58
28	Glycosylphosphatidylinositol-Anchored Proteins Are Required for Cell Wall Synthesis and Morphogenesis in Arabidopsis. Plant Cell, 2005, 17, 1128-1140.	6.6	132
29	The gravitropism defective 2 Mutants of Arabidopsis Are Deficient in a Protein Implicated in Endocytosis in Caenorhabditis elegans. Plant Physiology, 2004, 136, 3095-3103.	4.8	73
30	Stomatal Development and Pattern Controlled by a MAPKK Kinase. Science, 2004, 304, 1494-1497.	12.6	516
31	A MAPKK Kinase Gene Regulates Extra-Embryonic Cell Fate in Arabidopsis. Cell, 2004, 116, 109-119.	28.9	381
32	The Arabidopsis HINKEL Gene Encodes a Kinesin-Related Protein Involved in Cytokinesis and Is Expressed in a Cell Cycle-Dependent Manner. Current Biology, 2002, 12, 153-158.	3.9	169
33	The Arabidopsis KNOLLE and KEULE genes interact to promote vesicle fusion during cytokinesis. Current Biology, 2000, 10, 1371-1374.	3.9	159
34	Positional Cloning in Arabidopsis. Why It Feels Good to Have a Genome Initiative Working for You1. Plant Physiology, 2000, 123, 795-806.	4.8	452
35	The Arabidopsis KNOLLE Protein Is a Cytokinesis-specific Syntaxin. Journal of Cell Biology, 1997, 139, 1485-1493.	5.2	500
36	Cytokinesis in the Arabidopsis Embryo Involves the Syntaxin-Related KNOLLE Gene Product. Cell, 1996, 84, 61-71.	28.9	519

#	Article	IF	CITATIONS
37	Regulatory and coding regions of the segmentation gene hunchback are functionally conserved between Drosophila virilis and Drosophila melanogaster. Mechanisms of Development, 1994, 45, 105-115.	1.7	52