Stuart Bearhop

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5202540/publications.pdf Version: 2024-02-01

STUADT READHOD

#	Article	IF	CITATIONS
1	Comparing isotopic niche widths among and within communities: SIBER - Stable Isotope Bayesian Ellipses in R. Journal of Animal Ecology, 2011, 80, 595-602.	1.3	2,260
2	Source Partitioning Using Stable Isotopes: Coping with Too Much Variation. PLoS ONE, 2010, 5, e9672.	1.1	2,255
3	Determining trophic niche width:Âa novel approach using stable isotope analysis. Journal of Animal Ecology, 2004, 73, 1007-1012.	1.3	1,030
4	Applying stable isotopes to examine foodâ€web structure: an overview of analytical tools. Biological Reviews, 2012, 87, 545-562.	4.7	936
5	A niche for isotopic ecology. Frontiers in Ecology and the Environment, 2007, 5, 429.	1.9	917
6	Best practices for use of stable isotope mixing models in food-web studies. Canadian Journal of Zoology, 2014, 92, 823-835.	0.4	873
7	Carry-over effects as drivers of fitness differences in animals. Journal of Animal Ecology, 2011, 80, 4-18.	1.3	670
8	A niche for isotopic ecology. Frontiers in Ecology and the Environment, 2007, 5, 429-436.	1.9	607
9	Bayesian stable isotope mixing models. Environmetrics, 2013, 24, 387-399.	0.6	519
10	Factors That Influence Assimilation Rates and Fractionation of Nitrogen and Carbon Stable Isotopes in Avian Blood and Feathers. Physiological and Biochemical Zoology, 2002, 75, 451-458.	0.6	498
11	Food for thought: supplementary feeding as a driver of ecological change in avian populations. Frontiers in Ecology and the Environment, 2008, 6, 476-484.	1.9	462
12	Applications of stable isotope analyses to avian ecology. Ibis, 2008, 150, 447-461.	1.0	417
13	Assortative Mating as a Mechanism for Rapid Evolution of a Migratory Divide. Science, 2005, 310, 502-504.	6.0	353
14	Marine renewable energy: potential benefits to biodiversity? An urgent call for research. Journal of Applied Ecology, 2009, 46, 1145-1153.	1.9	327
15	Changes in fisheries discard rates and seabird communities. Nature, 2004, 427, 727-730.	13.7	257
16	Space Partitioning Without Territoriality in Gannets. Science, 2013, 341, 68-70.	6.0	255
17	Individual responses of seabirds to commercial fisheries revealed using GPS tracking, stable isotopes and vessel monitoring systems. Journal of Applied Ecology, 2010, 47, 487-497.	1.9	227
18	Stable isotopes indicate sex-specific and long-term individual foraging specialisation in diving seabirds. Marine Ecology - Progress Series, 2006, 311, 157-164.	0.9	226

#	Article	IF	CITATIONS
19	Applications of stable isotope techniques to the ecology of mammals. Mammal Review, 2008, 38, 87-107.	2.2	216
20	Winter feeding of birds increases productivity in the subsequent breeding season. Biology Letters, 2008, 4, 220-223.	1.0	182
21	Erroneous behaviour of MixSIR, a recently published Bayesian isotope mixing model: a discussion of Moore & Semmens (2008). Ecology Letters, 2009, 12, E1-5.	3.0	174
22	A forensic approach to understanding diet and habitat use from stable isotope analysis of (avian) claw material. Functional Ecology, 2003, 17, 270-275.	1.7	171
23	Stable isotopes reveal individual variation in migration strategies and habitat preferences in a suite of seabirds during the nonbreeding period. Oecologia, 2009, 160, 795-806.	0.9	161
24	A phylogenetically controlled metaâ€analysis of biologging device effects on birds: Deleterious effects and a call for more standardized reporting of study data. Methods in Ecology and Evolution, 2018, 9, 946-955.	2.2	159
25	Research priorities for seabirds: improving conservation and management in the 21st century. Endangered Species Research, 2012, 17, 93-121.	1.2	144
26	Stable isotope ratios indicate that body condition in migrating passerines is influenced by winter habitat. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, S215-8.	1.2	143
27	Dynamics of mercury in blood and feathers of great skuas. Environmental Toxicology and Chemistry, 2000, 19, 1638-1643.	2.2	139
28	Migratory dichotomy and associated phenotypic variation in marine turtles revealed by satellite tracking and stable isotope analysis. Marine Ecology - Progress Series, 2011, 421, 291-302.	0.9	139
29	Animal cultures matter for conservation. Science, 2019, 363, 1032-1034.	6.0	136
30	Sexual segregation in distribution, diet and trophic level of seabirds: insights from stable isotope analysis. Marine Biology, 2011, 158, 2199-2208.	0.7	133
31	Stable isotopes indicate the extent of freshwater feeding by cormorants Phalacrocorax carbo shot at inland fisheries in England. Journal of Applied Ecology, 1999, 36, 75-84.	1.9	131
32	Longâ€ŧerm individual foraging site fidelity—why some gannets don't change their spots. Ecology, 2015, 96, 3058-3074.	1.5	128
33	Assessing the diet of great skuas, Catharacta skua, using five different techniques. Polar Biology, 2003, 26, 20-26.	0.5	126
34	Individual differences in searching behaviour and spatial foraging consistency in a central place marine predator. Oikos, 2014, 123, 33-40.	1.2	124
35	Badger social networks correlate with tuberculosis infection. Current Biology, 2013, 23, R915-R916.	1.8	121
36	Latitudinal variation in blue tit and great tit nest characteristics indicates environmental adjustment. Journal of Biogeography, 2012, 39, 1669-1677.	1.4	113

#	Article	IF	CITATIONS
37	The consequences of unidentifiable individuals for the analysis of an animal social network. Animal Behaviour, 2015, 104, 1-11.	0.8	111
38	Feathers as a means of monitoring mercury in seabirds: Insights from stable isotope analysis. Environmental Pollution, 1998, 101, 193-200.	3.7	108
39	Carryâ€over effects reveal reproductive costs in a longâ€distance migrant. Journal of Animal Ecology, 2010, 79, 974-982.	1.3	102
40	The importance of fission–fusion social group dynamics in birds. Ibis, 2014, 156, 701-715.	1.0	101
41	Influence of trophic position and foraging range on mercury levels within a seabird community. Marine Ecology - Progress Series, 2009, 375, 277-288.	0.9	100
42	Small cetacean captures in Peruvian artisanal fisheries: High despite protective legislation. Biological Conservation, 2010, 143, 136-143.	1.9	98
43	Migration and dispersal patterns of bats and their influence on genetic structure. Mammal Review, 2013, 43, 183-195.	2.2	98
44	Temporal and intrapopulation variation in prey choice of wintering geese determined by stable isotope analysis. Journal of Animal Ecology, 2006, 75, 1190-1200.	1.3	97
45	Does food supplementation really enhance productivity of breeding birds?. Oecologia, 2010, 164, 311-320.	0.9	95
46	Shedding light on light: benefits of anthropogenic illumination to a nocturnally foraging shorebird. Journal of Animal Ecology, 2013, 82, 478-485.	1.3	93
47	Application of Nitrogen and Carbon Stable Isotopes (δ15N and δ13C) to Quantify Food Chain Length and Trophic Structure. PLoS ONE, 2014, 9, e93281.	1.1	93
48	Variability in mercury concentrations of great skuas <i>Catharacta skua</i> :the influence of colony, diet and trophic status inferred from stable isotope signatures. Marine Ecology - Progress Series, 2000, 195, 261-268.	0.9	88
49	Bioamplification of Mercury in Great Skua Catharacta skua Chicks: the Influence of Trophic Status as Determined by Stable Isotope Signatures of Blood and Feathers. Marine Pollution Bulletin, 2000, 40, 181-185.	2.3	87
50	Sexual segregation in a wide-ranging marine predator is a consequence of habitat selection. Marine Ecology - Progress Series, 2015, 518, 1-12.	0.9	87
51	Movements, winter distribution and activity patterns of Falkland and brown skuas: insights from loggers and isotopes. Marine Ecology - Progress Series, 2007, 345, 281-291.	0.9	86
52	Effects of age and reproductive status on individual foraging site fidelity in a long-lived marine predator. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171068.	1.2	85
53	The Ecological Significance of Tool Use in New Caledonian Crows. Science, 2010, 329, 1523-1526.	6.0	82
54	Sex-specific foraging behaviour in northern gannets Morus bassanus: incidence and implications. Marine Ecology - Progress Series, 2012, 457, 151-162.	0.9	79

#	Article	IF	CITATIONS
55	Hydrogen isotope analysis of natural abundance and deuterium-enriched waters by reduction over chromium on-line to a dynamic dual inlet isotope-ratio mass spectrometer. Rapid Communications in Mass Spectrometry, 2001, 15, 1297-1303.	0.7	78
56	Assessing wave energy effects on biodiversity: the Wave Hub experience. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2012, 370, 502-529.	1.6	77
57	Influence of Lipid and Uric Acid on δ ¹³ C and δ ¹⁵ N Values of Avian Blood: Implications for Trophic Studies. Auk, 2000, 117, 504-507.	0.7	76
58	Ecology of Problem Individuals and the Efficacy of Selective Wildlife Management. Trends in Ecology and Evolution, 2017, 32, 518-530.	4.2	76
59	Metaâ€population evidence of oriented chain migration in northern gannets (Morus bassanus). Frontiers in Ecology and the Environment, 2012, 10, 237-242.	1.9	74
60	Seabird movement reveals the ecological footprint of fishing vessels. Current Biology, 2014, 24, R514-R515.	1.8	74
61	SIDER: an R package for predicting trophic discrimination factors of consumers based on their ecology and phylogenetic relatedness. Ecography, 2018, 41, 1393-1400.	2.1	71
62	Mercury levels in seabirds and their fish prey at the Ebro Delta (NW Mediterranean): the role of trawler discards as a source of contamination. Marine Ecology - Progress Series, 2002, 232, 281-290.	0.9	71
63	Potential impacts of waveâ€powered marine renewable energy installations on marine birds. Ibis, 2010, 152, 683-697.	1.0	67
64	Heat stress in a high-latitude seabird: effects of temperature and food supply on bathing and nest attendance of great skuas <i>Catharacta skua</i> . Journal of Avian Biology, 2008, 39, 163-169.	0.6	66
65	Winter food provisioning reduces future breeding performance in a wild bird. Scientific Reports, 2013, 3, 2002.	1.6	66
66	A deepening understanding of animal culture suggests lessons for conservation. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20202718.	1.2	65
67	Performance of Proximity Loggers in Recording Intra- and Inter-Species Interactions: A Laboratory and Field-Based Validation Study. PLoS ONE, 2012, 7, e39068.	1.1	63
68	Search and foraging behaviors from movement data: A comparison of methods. Ecology and Evolution, 2018, 8, 13-24.	0.8	63
69	Integrated population modelling reveals a perceived source to be a cryptic sink. Journal of Animal Ecology, 2016, 85, 467-475.	1.3	62
70	Seabird diversity hotspot linked to ocean productivity in the Canary Current Large Marine Ecosystem. Biology Letters, 2016, 12, 20160024.	1.0	61
71	Trophic niche partitioning among sympatric baleen whale species following the collapse of groundfish stocks in the Northwest Atlantic. Marine Ecology - Progress Series, 2014, 497, 285-301.	0.9	61
72	Threeâ€dimensional tracking of a wideâ€ranging marine predator: flight heights and vulnerability to offshore wind farms. Journal of Applied Ecology, 2015, 52, 1474-1482.	1.9	58

#	Article	IF	CITATIONS
73	Individual seabirds show consistent foraging strategies in response to predictable fisheries discards. Journal of Avian Biology, 2015, 46, 431-440.	0.6	57
74	Element patterns in albatrosses and petrels: Influence of trophic position, foraging range, and prey type. Environmental Pollution, 2010, 158, 98-107.	3.7	54
75	A novel projection technique to identify important at-sea areas for seabird conservation: An example using Northern gannets breeding in the North East Atlantic. Biological Conservation, 2012, 156, 43-52.	1.9	53
76	REPRODUCTIVE CONSEQUENCES FOR GREAT SKUAS SPECIALIZING AS SEABIRD PREDATORS. Condor, 2004, 106, 275.	0.7	52
77	Cultural inheritance drives site fidelity and migratory connectivity in a long-distance migrant. Molecular Ecology, 2010, 19, 5484-5496.	2.0	50
78	Pellets as indicators of diet in Great SkuasCatharacta skua. Bird Study, 2001, 48, 373-376.	0.4	48
79	White-capped albatrosses alter fine-scale foraging behavior patterns when associated with fishing vessels. Marine Ecology - Progress Series, 2011, 428, 289-301.	0.9	47
80	Structure and functioning of intertidal food webs along an avian flyway: a comparative approach using stable isotopes. Functional Ecology, 2016, 30, 468-478.	1.7	45
81	Predation by great skuas at a large Shetland seabird colony. Journal of Applied Ecology, 2004, 41, 1117-1128.	1.9	44
82	Mean corpuscular volume (MCV) as a measure of condition in birds. Ecology Letters, 1999, 2, 352-356.	3.0	42
83	Diet, individual specialisation and breeding of brown skuas (Catharacta antarctica lonnbergi): an investigation using stable isotopes. Polar Biology, 2009, 32, 27-33.	0.5	41
84	Using time-series similarity measures to compare animal movement trajectories in ecology. Behavioral Ecology and Sociobiology, 2019, 73, 1.	0.6	41
85	Seabird predation by great skuas <i>Stercorarius skua</i> – intraâ€specific competition for food?. Journal of Avian Biology, 2007, 38, 234-246.	0.6	40
86	Individual foraging specialisation in a social mammal: the European badger (Meles meles). Oecologia, 2014, 176, 409-421.	0.9	40
87	Reproductive Consequences for Great Skuas Specializing as Seabird Predators. Condor, 2004, 106, 275-287.	0.7	39
88	Resource availability affects individual niche variation and its consequences in group-living European badgers Meles meles. Oecologia, 2015, 178, 31-43.	0.9	39
89	Heterozygosity-fitness correlations in a migratory bird: an analysis of inbreeding and single-locus effects. Molecular Ecology, 2011, 20, 4786-4795.	2.0	38
90	User behaviour, best practice and the risks of non-target exposure associated with anticoagulant rodenticide use. Journal of Environmental Management, 2011, 92, 1503-1508.	3.8	38

#	Article	IF	CITATIONS
91	Annual Variation in Great Skua Diets: The Importance of Commercial Fisheries and Predation on Seabirds Revealed by Combining Dietary Analyses. Condor, 2001, 103, 802.	0.7	37
92	Temporal and spatial variation in the diet of a marine top predator—links with commercial fisheries. Marine Ecology - Progress Series, 2008, 367, 223-232.	0.9	37
93	Internet-based monitoring of public perception of conservation. Biological Conservation, 2017, 206, 304-309.	1.9	37
94	Environmental Conditions during Breeding Modify the Strength of Mass-Dependent Carry-Over Effects in a Migratory Bird. PLoS ONE, 2013, 8, e77783.	1.1	36
95	Comparing pellet and stable isotope analyses of nestling <scp>B</scp> onelli's <scp>E</scp> agle <i>Aquila fasciata</i> diet. Ibis, 2014, 156, 176-188.	1.0	36
96	Longer and Less Overlapping Food Webs in Anthropogenically Disturbed Marine Ecosystems: Confirmations from the Past. PLoS ONE, 2014, 9, e103132.	1.1	36
97	Rodenticide exposure in wood mouse and house mouse populations on farms and potential secondary risk to predators. Ecotoxicology, 2012, 21, 1325-1332.	1.1	35
98	Evaluating Bayesian stable isotope mixing models of wild animal diet and the effects of trophic discrimination factors and informative priors. Methods in Ecology and Evolution, 2020, 11, 139-149.	2.2	35
99	Nocturnal foraging by great skuas Stercorarius skua: implications for conservation of storm-petrel populations. Journal Fur Ornithologie, 2006, 147, 405-413.	1.2	34
100	Do nonâ€native invasive fish support elevated lamprey populations?. Journal of Applied Ecology, 2010, 47, 121-129.	1.9	34
101	Migrant birds and mammals live faster than residents. Nature Communications, 2020, 11, 5719.	5.8	34
102	Avian Dispersal and Demography: Scaling up to the Landscape and Beyond. Condor, 2004, 106, 717-719.	0.7	33
103	Does small mammal prey guild affect the exposure of predators to anticoagulant rodenticides?. Environmental Pollution, 2011, 159, 3106-3112.	3.7	33
104	Fat provisioning in winter impairs egg production during the following spring: a landscapeâ€scale study of blue tits. Journal of Animal Ecology, 2013, 82, 673-682.	1.3	33
105	Prey choice affects the trade-off balance between predation and starvation in an avian herbivore. Animal Behaviour, 2006, 71, 1335-1341.	0.8	31
106	Denning behaviour of the European badger (Meles meles) correlates with bovine tuberculosis infection status. Behavioral Ecology and Sociobiology, 2013, 67, 471-479.	0.6	31
107	Statistical basis and outputs of stable isotope mixing models: Comment on Fry (2013). Marine Ecology - Progress Series, 2013, 490, 285-289.	0.9	31
108	Annual Variation in Great Skua Diets: The Importance of Commercial Fisheries and Predation on Seabirds Revealed by Combining Dietary Analyses. Condor, 2001, 103, 802-809.	0.7	30

#	Article	IF	CITATIONS
109	Using daily ration models and stable isotope analysis to predict biomass depletion by herbivores. Journal of Applied Ecology, 2006, 43, 1022-1030.	1.9	29
110	Habitat utilisation during staging affects body condition in a long distance migrant, <i>Branta bernicla hrota</i> : potential impacts on fitness?. Journal of Avian Biology, 2008, 39, 704-708.	0.6	29
111	Latitudinal changes in the structure of marine food webs in the Southwestern Atlantic Ocean. Marine Ecology - Progress Series, 2015, 538, 23-34.	0.9	29
112	Assessing the structure and temporal dynamics of seabird communities: the challenge of capturing marine ecosystem complexity. Journal of Animal Ecology, 2016, 85, 199-212.	1.3	28
113	Habitat and body size effects on the isotopic niche space of invasive lionfish and endangered Nassau grouper. Ecosphere, 2014, 5, 1-11.	1.0	27
114	Widespread exposure to lead affects the body condition of free-living whooper swans Cygnus cygnus wintering in Britain. Environmental Pollution, 2016, 209, 60-67.	3.7	27
115	AVIAN DISPERSAL AND DEMOGRAPHY: SCALING UP TO THE LANDSCAPE AND BEYOND. Condor, 2004, 106, 717.	0.7	26
116	Important impacts of tissue selection and lipid extraction on ecological parameters derived from stable isotope ratios. Methods in Ecology and Evolution, 2013, 4, 944-953.	2.2	26
117	Climatic conditions produce contrasting influences on demographic traits in a longâ€distance Arctic migrant. Journal of Animal Ecology, 2017, 86, 285-295.	1.3	25
118	Multi-Scale Effects of Nestling Diet on Breeding Performance in a Terrestrial Top Predator Inferred from Stable Isotope Analysis. PLoS ONE, 2014, 9, e95320.	1.1	25
119	Behavioural responses of invasive American mink <i>Neovison vison</i> to an eradication campaign, revealed by stable isotope analysis. Journal of Applied Ecology, 2010, 47, 114-120.	1.9	24
120	Understanding species distribution in dynamic populations: a new approach using spatioâ€ŧemporal point process models. Ecography, 2019, 42, 1092-1102.	2.1	23
121	Status and Distribution of Fea's Petrel, Bulwer's Petrel, Manx Shearwater, Little Shearwater and Band-Rumped Storm-Petrel in the Azores Archipelago. Waterbirds, 1999, 22, 358.	0.2	22
122	Absence of effects of predator control on nesting success of Northern Lapwings Vanellus vanellus: implications for conservation. Ibis, 2011, 153, 543-555.	1.0	22
123	Using Stable-Isotope Analysis as a Technique for Determining Consumption of Supplementary Foods by Individual Birds. Condor, 2011, 113, 475-482.	0.7	21
124	Resolving issues with environmental impact assessment of marine renewable energy installations. Frontiers in Marine Science, 2014, 1, .	1.2	21
125	Rapid population growth of Great Skuas <i>Catharacta skua</i> at St Kilda: implications for management and conservation. Bird Study, 1999, 46, 174-183.	0.4	20
126	Is climate change the most likely driver of range expansion for a critically endangered top predator in northeast Atlantic waters?. Biology Letters, 2008, 4, 204-205.	1.0	20

#	Article	IF	CITATIONS
127	Mesopredators constrain a top predator: competitive release of ravens after culling crows. Biology Letters, 2009, 5, 617-620.	1.0	20
128	Whisker growth in wild Eurasian badgers Meles meles: implications for stable isotope and bait marking studies. European Journal of Wildlife Research, 2013, 59, 341-350.	0.7	20
129	Using accelerometry to compare costs of extended migration in an arctic herbivore. Environmental Epigenetics, 2017, 63, 667-674.	0.9	19
130	Shape can influence the rate of colony fragmentation in ground nesting seabirds. Oikos, 2005, 111, 473-478.	1.2	18
131	Using stable isotope analysis of multiple feather tracts to identify moulting provenance of vagrant birds: a case study of Baikal Teal <i>Anas formosa</i> in Denmark. Ibis, 2007, 149, 622-625.	1.0	18
132	Sex differences in settlement behaviour and condition of chiffchaffs Phylloscopus collybita at a wintering site in Portugal. Are females doing better?. Journal of Ornithology, 2007, 148, 241-249.	0.5	18
133	Localised control of an introduced predator: creating problems for the future?. Biological Invasions, 2011, 13, 2817-2828.	1.2	18
134	Population genetic structure of serotine bats (Eptesicus serotinus) across Europe and implications for the potential spread of bat rabies (European bat lyssavirus EBLV-1). Heredity, 2015, 115, 83-92.	1.2	18
135	Multichannel feeding by spider functional groups is driven by feeding strategies and resource availability. Oikos, 2018, 127, 23-33.	1.2	18
136	Long-term trends in albatross diets in relation to prey availability and breeding success. Marine Biology, 2020, 167, 1.	0.7	18
137	Climate change and contrasting plasticity in timing of a two-step migration episode of an Arctic-nesting avian herbivore. Environmental Epigenetics, 2014, 60, 233-242.	0.9	17
138	Individual Spatial Consistency and Dietary Flexibility in the Migratory Behavior of Northern Gannets Wintering in the Northeast Atlantic. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	17
139	Hatching Asynchrony and Growth Trade-Offs Within Barn Swallow Broods. Condor, 2009, 111, 668-674.	0.7	16
140	A review of spatial and temporal variation in grey and common seal diet in the United Kingdom and Ireland. Journal of the Marine Biological Association of the United Kingdom, 2012, 92, 1711-1722.	0.4	16
141	Species versus guild level differentiation revealed across the annual cycle by isotopic niche examination. Journal of Animal Ecology, 2014, 83, 470-478.	1.3	16
142	Insights into antimicrobial resistance among long distance migratory East Canadian High Arctic light-bellied Brent geese (Branta bernicla hrota). Irish Veterinary Journal, 2015, 69, 13.	0.8	16
143	Postrelease movement and habitat selection of translocated pine martens <i>Martes martes</i> . Ecology and Evolution, 2020, 10, 5106-5118.	0.8	16
144	The effect of group size on vigilance in <scp>R</scp> uddy <scp>T</scp> urnstones <i><scp>A</scp>renaria interpres</i> varies with foraging habitat. Ibis, 2013, 155, 246-257.	1.0	15

#	Article	IF	CITATIONS
145	Mercury exposure in an endangered seabird: long-term changes and relationships with trophic ecology and breeding success. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20202683.	1.2	15
146	Use of stable isotope fingerprints to assign wintering origin and trace shorebird movements along the East Atlantic Flyway. Basic and Applied Ecology, 2016, 17, 177-187.	1.2	14
147	High altitude flights by ruddy shelduck <i>Tadorna ferruginea</i> during transâ€Himalayan migrations. Journal of Avian Biology, 2017, 48, 1310-1315.	0.6	14
148	Resource partitioning among airâ€breathing marine predators: are body size and mouth diameter the major determinants?. Marine Ecology, 2016, 37, 957-969.	0.4	13
149	Ageâ€related variation in the trophic characteristics of a marsupial carnivore, the Tasmanian devil Sarcophilus harrisii. Ecology and Evolution, 2020, 10, 7861-7871.	0.8	13
150	Strangford Lough and the SeaGen Tidal Turbine. Humanity and the Sea, 2014, , 153-172.	0.5	13
151	Long-term survival rates in colour-ringed shorebirds – practical considerations in the application of mark–recapture models. Bird Study, 2003, 50, 271-279.	0.4	12
152	The diet of an invasive nonnative predator, the feral ferret Mustela furo, and implications for the conservation of ground-nesting birds. European Journal of Wildlife Research, 2011, 57, 107-117.	0.7	12
153	Should I stay or should I go? Fitness costs and benefits of prolonged parent–offspring and sibling–sibling associations in an Arctic-nesting goose population. Oecologia, 2016, 181, 809-817.	0.9	12
154	Translocated native pine martens <i>Martes martes</i> alter shortâ€ŧerm space use by invasive nonâ€native grey squirrels <i>Sciurus carolinensis</i> . Journal of Applied Ecology, 2020, 57, 903-913.	1.9	12
155	Frequency and consequences of individual dietary specialisation in a wide-ranging marine predator, the northern gannet. Marine Ecology - Progress Series, 2018, 604, 251-262.	0.9	12
156	GPS tracking reveals landfill closures induce higher foraging effort and habitat switching in gulls. Movement Ecology, 2021, 9, 56.	1.3	12
157	The normal haematology of great skuas (Catharacta skua) in the wild. Comparative Haematology International, 1999, 9, 107-109.	0.5	10
158	Ecological Responses to Extreme Flooding Events: A Case Study with a Reintroduced Bird. Scientific Reports, 2016, 6, 28595.	1.6	10
159	Effects of winter food provisioning on the phenotypes of breeding blue tits. Ecology and Evolution, 2018, 8, 5059-5068.	0.8	10
160	Temperature and precipitation at migratory grounds influence demographic trends of an Arcticâ€breeding bird. Global Change Biology, 2020, 26, 5447-5458.	4.2	10
161	Sexual Mismatch Between Vessel-Associated Foraging and Discard Consumption in a Marine Top Predator. Frontiers in Marine Science, 2021, 8, .	1.2	10
162	Spatial and sex differences in mercury contamination of skuas in the Southern Ocean. Environmental Pollution, 2022, 297, 118841.	3.7	10

#	Article	IF	CITATIONS
163	Geolocators reveal variation and sexâ€specific differences in the migratory strategies of a longâ€distance migrant. Ibis, 2022, 164, 451-467.	1.0	9
164	Predicting intention to hunt protected wildlife: a case study of Bewick's swan in the European Russian Arctic. Oryx, 2022, 56, 228-240.	0.5	9
165	Influence of Lipid and Uric Acid on δ13C and δ15N Values of Avian Blood: Implications for Trophic Studies. Auk, 2000, 117, 504-507.	0.7	8
166	The first record of Brown Skua Catharacta antarctica in Europe. Ibis, 2003, 146, 95-102.	1.0	8
167	Future Directions and Challenges for Using Stable Isotopes in Advancing Terrestrial Animal Migration Research. Journal of Nano Education (Print), 2008, , 129-139.	0.3	7
168	Provenance does matter: links between winter trophic segregation and the migratory origins of European robins. Oecologia, 2016, 182, 985-994.	0.9	7
169	Consistent measures of oxidative balance predict survival but not reproduction in a longâ€distance migrant. Journal of Animal Ecology, 2020, 89, 1872-1882.	1.3	7
170	No evidence for sex bias in winter interâ€site movements in an Arcticâ€nesting goose population. Ibis, 2015, 157, 401-405.	1.0	6
171	Stable isotopes and mtDNA reveal niche segregation but no evidence of intergradation along a habitat gradient in the Lesser Whitethroat complex (Sylvia curruca; Passeriformes; Aves). Journal of Ornithology, 2016, 157, 1017-1027.	0.5	6
172	Conditions during adulthood affect cohort-specific reproductive success in an Arctic-nesting goose population. PeerJ, 2016, 4, e2044.	0.9	5
173	Isolation, characterisation and predicted genome locations of Light-bellied Brent goose (Branta) Tj ETQq1 1 0.78	4314 rgBT 0.4	/Qverlock 1(
174	Winter Habitat Influences the Number of Feather Mites of Two Species Living on European RobinsErithacus rubecula. Ardeola, 2011, 58, 103-111.	0.4	4
175	The role of immigration and reinforcement in the population dynamics of a longâ€lived bird: implications for the conservation of threatened species. Animal Conservation, 2019, 22, 49-58.	1.5	4
176	Conservation implications of misidentification and killing of protected species. Conservation Science and Practice, 2019, 1, e24.	0.9	4
177	Measures of oxidative state are primarily driven by extrinsic factors in a long-distance migrant. Biology Letters, 2019, 15, 20180750.	1.0	4
178	Isotopic niche variation in Tasmanian devils Sarcophilus harrisii with progression of devil facial tumor disease. Ecology and Evolution, 2021, 11, 8038-8053.	0.8	4
179	Changes in Behaviour and Proxies of Physiology Suggest Individual Variation in the Building of Migratory Phenotypes in Preparation for Long-Distance Flights. Frontiers in Ecology and Evolution, 2022, 10, .	1.1	4
180	Associations between abundances of freeâ€roaming gamebirds and common buzzards <i>Buteo buteo</i> are not driven by consumption of gamebirds in the buzzard breeding season. Ecology and Evolution, 2022, 12, e8877.	0.8	4

#	Article	IF	CITATIONS
181	How do Robins <i>Erithacus rubecula</i> resident in Iberia respond to seasonal flooding by conspecific migrants?. Bird Study, 2011, 58, 435-442.	0.4	3
182	Spring ice formation on goose neck collars: effects on body condition and survival in Greenland white-fronted geese Anser albifrons flavirostris. European Journal of Wildlife Research, 2014, 60, 831-834.	0.7	3
183	Adult survival and perâ€capita production of young explain dynamics of a longâ€lived goose population. Ibis, 2022, 164, 574-580.	1.0	3
184	Dynamics of mercury in blood and feathers of great skuas. , 2000, 19, 1638.		3
185	Data Quality Influences the Predicted Distribution and Habitat of Four Southern-Hemisphere Albatross Species. Frontiers in Marine Science, 0, 9, .	1.2	3
186	Supplementary DNA evidence fails to confirm presence of Brown Skuas <i>Stercorarius antarctica</i> in Europe: a retraction of Votier <i>etÂal</i> . (2004). Ibis, 2007, 149, 619-621.	1.0	2
187	Contributions of wild and provisioned foods to the diets of domestic cats that depredate wild animals. Ecosphere, 2021, 12, e03737.	1.0	2
188	Trophic relationships between the crab Libinia ferreirae and its symbionts. Marine Environmental Research, 2021, 171, 105479.	1.1	2
189	Spring and autumn movements of an Arctic bird in relation to temperature and primary production. Journal of Avian Biology, 2021, 52,	0.6	2
190	Nesting outcomes under anthropogenic change – effects of changing climate and nestbox provision on the reproduction of Great Tits <i>Parus major</i> . Ibis, 2021, 163, 65-78.	1.0	1