Rinti Banerjee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5202266/publications.pdf

Version: 2024-02-01

		109264	88593
128	5,347	35	70
papers	citations	h-index	g-index
130	130	130	8786
130	130	130	0700
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Biopolymer-Based Hydrogels for Cartilage Tissue Engineering. Chemical Reviews, 2011, 111, 4453-4474.	23.0	471
2	Targeted temperature sensitive magnetic liposomes for thermo-chemotherapy. Journal of Controlled Release, 2010, 142, 108-121.	4.8	435
3	Self-crosslinked oxidized alginate/gelatin hydrogel as injectable, adhesive biomimetic scaffolds for cartilage regeneration. Acta Biomaterialia, 2014, 10, 3650-3663.	4.1	340
4	In Vivo Analysis of Biodegradable Liposome Gold Nanoparticles as Efficient Agents for Photothermal Therapy of Cancer. Nano Letters, 2015, 15, 842-848.	4.5	338
5	Intravesical drug delivery: Challenges, current status, opportunities and novel strategies. Journal of Controlled Release, 2010, 148, 147-159.	4.8	220
6	Comparative evaluation of heating ability and biocompatibility of different ferrite-based magnetic fluids for hyperthermia application. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2007, 81B, 12-22.	1.6	187
7	Liposomes: Applications in Medicine. Journal of Biomaterials Applications, 2001, 16, 3-21.	1.2	163
8	The Newly Discovered Parkinson's Disease Associated Finnish Mutation (A53E) Attenuates α-Synuclein Aggregation and Membrane Binding. Biochemistry, 2014, 53, 6419-6421.	1.2	137
9	Multifunctional gold coated thermo-sensitive liposomes for multimodal imaging and photo-thermal therapy of breast cancer cells. Nanoscale, 2014, 6, 916-923.	2.8	133
10	Trigger responsive polymeric nanocarriers for cancer therapy. Biomaterials Science, 2015, 3, 955-987.	2.6	117
11	Synthesis and characterizations of water-based ferrofluids of substituted ferrites [Fe1â^xBxFe2O4, B=Mn, Co (x=0–1)] for biomedical applications. Journal of Magnetism and Magnetic Materials, 2008, 320, 724-730.	1.0	110
12	Thermal behavior of magnetically modalized poly(N-isopropylacrylamide)-chitosan based nanohydrogel. Colloids and Surfaces B: Biointerfaces, 2010, 81, 185-194.	2.5	99
13	Preparation and characterization of manganese ferrite-based magnetic liposomes for hyperthermia treatment of cancer. Journal of Magnetism and Magnetic Materials, 2007, 311, 208-215.	1.0	98
14	Curcuminoids-loaded liposomes in combination with arteether protects against Plasmodium berghei infection in mice. Experimental Parasitology, 2012, 131, 292-299.	0.5	96
15	Advancements in prophylactic and therapeutic nanovaccines. Acta Biomaterialia, 2020, 108, 1-21.	4.1	92
16	In vitro application of paclitaxel loaded magnetoliposomes for combined chemotherapy and hyperthermia. Colloids and Surfaces B: Biointerfaces, 2012, 96, 1-7.	2.5	87
17	A nanoparticulate injectable hydrogel as a tissue engineering scaffold for multiple growth factor delivery for bone regeneration. International Journal of Nanomedicine, 2013, 8, 47.	3.3	80
18	Nanobubble Liposome Complexes for Diagnostic Imaging and Ultrasound-Triggered Drug Delivery in Cancers: A Theranostic Approach. ACS Omega, 2019, 4, 15567-15580.	1.6	79

#	Article	IF	CITATIONS
19	Urothelium-adherent, ion-triggered liposome-in-gel system as a platform for intravesical drug delivery. Journal of Controlled Release, 2017, 245, 147-156.	4.8	65
20	Biodegradable hybrid polymeric membranes for ocular drug delivery. Acta Biomaterialia, 2010, 6, 1370-1379.	4.1	64
21	Development of polyvinyl alcohol–gelatin membranes for antibiotic delivery in the eye. Drug Development and Industrial Pharmacy, 2011, 37, 167-177.	0.9	64
22	Ultrasound-Responsive Carriers for Therapeutic Applications. ACS Biomaterials Science and Engineering, 2020, 6, 4731-4747.	2.6	64
23	Carboxymethyl-Chitosan-Tethered Lipid Vesicles: Hybrid Nanoblanket for Oral Delivery of Paclitaxel. Biomacromolecules, 2013, 14, 2272-2282.	2.6	61
24	Cellular interactions of lauric acid and dextran-coated magnetite nanoparticles. Journal of Magnetism and Magnetic Materials, 2007, 311, 282-287.	1.0	57
25	Borate aided Schiff's base formation yields in situ gelling hydrogels for cartilage regeneration. Journal of Materials Chemistry B, 2013, 1, 5564.	2.9	56
26	Wearable and implantable devices for drug delivery: Applications and challenges. Biomaterials, 2022, 283, 121435.	5.7	52
27	Advances in point-of-care diagnostic devices in cancers. Analyst, The, 2018, 143, 1326-1348.	1.7	51
28	Combinatorial liposomes of berberine and curcumin inhibit biofilm formation and intracellular methicillin resistant <i>Staphylococcus aureus</i> infections and associated inflammation. Journal of Materials Chemistry B, 2021, 9, 864-875.	2.9	48
29	Effect of d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) on surfactant monolayers. Colloids and Surfaces B: Biointerfaces, 2011, 85, 116-124.	2.5	41
30	Dual pH and Temperature Stimuli-Responsive Magnetic Nanohydrogels for Thermo-Chemotherapy. Journal of Nanoscience and Nanotechnology, 2014, 14, 4082-4089.	0.9	40
31	Biocompatibility and therapeutic evaluation of magnetic liposomes designed for self-controlled cancer hyperthermia and chemotherapy. Integrative Biology (United Kingdom), 2017, 9, 555-565.	0.6	40
32	Endogenous lung surfactant inspired pH responsive nanovesicle aerosols: Pulmonary compatible and site-specific drug delivery in lung metastases. Scientific Reports, 2014, 4, 7085.	1.6	39
33	Myocardial infarction: stem cell transplantation for cardiac regeneration. Regenerative Medicine, 2015, 10, 1025-1043.	0.8	38
34	Immunomodulatory nanosystems for treating inflammatory diseases. Biomaterials, 2021, 274, 120875.	5.7	38
35	Mechanically Stiff, Zinc Cross-Linked Nanocomposite Scaffolds with Improved Osteostimulation and Antibacterial Properties. ACS Applied Materials & Early; Interfaces, 2016, 8, 13735-13747.	4.0	37
36	Hybrid silver–gold nanoparticles suppress drug resistant polymicrobial biofilm formation and intracellular infection. Journal of Materials Chemistry B, 2020, 8, 4890-4898.	2.9	37

#	Article	IF	CITATIONS
37	Multi-scale strategy to eradicate Pseudomonas aeruginosa on surfaces using solid lipid nanoparticles loaded with free fatty acids. Nanoscale, 2014, 6, 825-832.	2.8	34
38	Pro-apoptotic liposomes-nanobubble conjugate synergistic with paclitaxel: a platform for ultrasound responsive image-guided drug delivery. Scientific Reports, 2018, 8, 2624.	1.6	34
39	Stable Liposome in Cosmetic Platforms for Transdermal Folic acid delivery for fortification and treatment of micronutrient deficiencies. Scientific Reports, 2018, 8, 16122.	1.6	34
40	Biocompatibility, biodistribution and efficacy of magnetic nanohydrogels in inhibiting growth of tumors in experimental mice models. Biomaterials Science, 2014, 2, 370-380.	2.6	33
41	Design, synthesis and structure–activity relationship (SAR) studies of imidazo[4,5-b]pyridine derived purine isosteres and their potential as cytotoxic agents. European Journal of Medicinal Chemistry, 2015, 89, 21-31.	2.6	33
42	Interfacial properties as biophysical markers of cervical cancer. Biomedicine and Pharmacotherapy, 2005, 59, 491-497.	2.5	30
43	Comparison of paclitaxel penetration in normal and cancerous cervical model monolayer membranes. Colloids and Surfaces B: Biointerfaces, 2006, 53, 179-186.	2.5	29
44	Gold Nanocages as Effective Photothermal Transducers in Killing Highly Tumorigenic Cancer Cells. Particle and Particle Systems Characterization, 2014, 31, 398-405.	1.2	28
45	Biocompatible calcium phosphate based tubes. Journal of Materials Chemistry, 2010, 20, 6923.	6.7	27
46	Smart material platforms for miniaturized devices: implications in disease models and diagnostics. Lab on A Chip, 2016, 16, 1978-1992.	3.1	26
47	Lung surfactant dysfunction in tuberculosis: Effect of mycobacterial tubercular lipids on dipalmitoylphosphatidylcholine surface activity. Colloids and Surfaces B: Biointerfaces, 2005, 45, 215-223.	2.5	25
48	Protein based nanoparticles as platforms for aspirin delivery for ophthalmologic applications. Colloids and Surfaces B: Biointerfaces, 2012, 93, 161-168.	2.5	25
49	Biphasic magnetic nanoparticles–nanovesicle hybrids for chemotherapy and self-controlled hyperthermia. Nanomedicine, 2014, 9, 955-970.	1.7	25
50	Curcumin Encapsulated Lecithin Nanoemulsions: An Oral Platform for Ultrasound Mediated Spatiotemporal Delivery of Curcumin to the Tumor. Scientific Reports, 2020, 10, 8587.	1.6	25
51	Liposome-encapsulated fish oil protein-tagged gold nanoparticles for intra-articular therapy in osteoarthritis. Nanomedicine, 2019, 14, 871-887.	1.7	24
52	Effect of saturated, I‰-3 and I‰-6 polyunsaturated fatty acids on myocardial infarction. Journal of Nutritional Biochemistry, 1999, 10, 338-344.	1.9	23
53	Stratum corneum modulation by chemical enhancers and lipid nanostructures: implications for transdermal drug delivery. Therapeutic Delivery, 2017, 8, 701-718.	1.2	23
54	Nanostructured self assembled lipid materials for drug delivery and tissue engineering. Therapeutic Delivery, 2011, 2, 1485-1516.	1.2	22

#	Article	IF	CITATIONS
55	Joint Surface-Active Phospholipid-Mimetic Liposomes for Intra-Articular Delivery of Paclitaxel. Journal of Biomedical Nanotechnology, 2015, 11, 1225-1235.	0.5	22
56	Effect of antitubercular drugs on dipalmitoylphosphatidylcholine monolayers: implications for drug loaded surfactants. Respiratory Physiology and Neurobiology, 2005, 145, 65-77.	0.7	21
57	Targeted Magnetic Liposomes Loaded with Doxorubicin. Methods in Molecular Biology, 2010, 605, 279-293.	0.4	21
58	Proapoptotic lipid nanovesicles: Synergism with paclitaxel in human lung adenocarcinoma A549 cells. Journal of Controlled Release, 2011, 156, 413-420.	4.8	21
59	Trigger-responsive engineered-nanocarriers and image-guided theranostics for rheumatoid arthritis. Nanoscale, 2020, 12, 12673-12697.	2.8	21
60	A comparative study on thermoresponsive magnetic nanohydrogels: role of surface-engineered magnetic nanoparticles. Colloid and Polymer Science, 2012, 290, 607-617.	1.0	20
61	Overcoming the stratum corneum barrier: a nano approach. Drug Delivery and Translational Research, 2013, 3, 205-208.	3.0	20
62	Proapoptotic miltefosine nanovesicles show synergism with paclitaxel: Implications for glioblastoma multiforme therapy. Cancer Letters, 2013, 334, 274-283.	3.2	20
63	Smart nanoparticles as targeting platforms for HIV infections. Nanoscale, 2015, 7, 7520-7534.	2.8	20
64	Multifunctional Core–Shell Glyconanoparticles for Galectin-3-Targeted, Trigger-Responsive Combination Chemotherapy. Biomacromolecules, 2020, 21, 2645-2660.	2.6	20
65	Effect of particle emissions from biofuel combustion on surface activity of model and therapeutic pulmonary surfactants. Environmental Toxicology and Pharmacology, 2006, 22, 325-333.	2.0	19
66	Nanostructured gellan and xanthan hydrogel depot integrated within a baghdadite scaffold augments bone regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1195-1211.	1.3	19
67	Tensiometric Profiles and Their Modulation by Cholesterol: Implications in Cervical Cancer. Cancer Investigation, 2007, 25, 172-181.	0.6	18
68	Effect of Fluidizing Agents on Paclitaxel Penetration in Cervical Cancerous Monolayer Membranes. Journal of Membrane Biology, 2007, 219, 83-91.	1.0	18
69	Nanovesicle aerosols as surfactant therapy in lung injury. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 665-672.	1.7	17
70	Synergistic locoregional chemoradiotherapy using a composite liposome-in-gel system as an injectable drug depot. International Journal of Nanomedicine, 2016, Volume 11, 6435-6448.	3.3	16
71	A tumor responsive self healing prodrug hydrogel enables synergistic action of doxorubicin and miltefosine for focal combination chemotherapy. Journal of Materials Chemistry B, 2019, 7, 2920-2925.	2.9	16
72	Interactions between hematological derivatives and dipalmitoyl phosphatidyl choline: implications for adult respiratory distress syndrome. Colloids and Surfaces B: Biointerfaces, 2004, 34, 95-104.	2.5	15

#	Article	IF	Citations
73	Effects of albumin and erythrocyte membranes on spread monolayers of lung surfactant lipids. Colloids and Surfaces B: Biointerfaces, 2006, 50, 9-17.	2.5	14
74	Trigger-responsive nanoparticles: control switches for cancer therapy. Nanomedicine, 2011, 6, 1657-1660.	1.7	13
75	Ultrasound-Triggered Spatiotemporal Delivery of Topotecan and Curcumin as Combination Therapy for Cancer. Journal of Pharmacology and Experimental Therapeutics, 2019, 370, 876-893.	1.3	13
76	Structural insights into loss of function of a pore forming toxin and its role in pneumococcal adaptation to an intracellular lifestyle. PLoS Pathogens, 2020, 16, e1009016.	2.1	13
77	Evaluation of antitubercular drug insertion into preformed dipalmitoylphosphatidylcholine monolayers. Colloids and Surfaces B: Biointerfaces, 2008, 62, 258-264.	2.5	12
78	Molecular interactions of cord factor with dipalmitoylphosphatidylcholine monolayers: Implications for lung surfactant dysfunction in pulmonary tuberculosis. Colloids and Surfaces B: Biointerfaces, 2008, 65, 120-125.	2.5	12
79	Enhanced absorption, and efficacy of oral self-assembled paclitaxel nanocochleates in multi-drug resistant colon cancer. International Journal of Pharmaceutics, 2020, 586, 119482.	2.6	12
80	Nanoparticle platforms for dermal <scp>antiaging</scp> technologies: Insights in cellular and molecular mechanisms. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1746.	3.3	12
81	Multi trigger responsive, surface active lipid nanovesicle aerosols for improved efficacy of paclitaxel in lung cancer. Integrative Biology (United Kingdom), 2013, 5, 239-248.	0.6	11
82	Nanotechnology in drug delivery: present status and a glimpse into the future. Therapeutic Delivery, 2018, 9, 231-232.	1.2	11
83	Effect of mycobacterial lipids on surface properties of Curosurfâ,,¢: Implications for lung surfactant dysfunction in tuberculosis. Respiratory Physiology and Neurobiology, 2008, 162, 73-79.	0.7	10
84	Targeted Magnetic Liposomes Loaded with Doxorubicin. Methods in Molecular Biology, 2017, 1522, 257-272.	0.4	10
85	Core–shell nanoparticles as platform technologies for paper based point-of-care devices to detect antimicrobial resistance. Journal of Materials Chemistry B, 2020, 8, 6296-6306.	2.9	10
86	Development of smart core-shell nanoparticle-based sensors for the point-of-care detection of alpha amylase in diagnostics and forensics. Biosensors and Bioelectronics, 2021, 184, 113244.	5.3	10
87	Dynamic surface tensiometry of tissues using Langmuir films. Colloids and Surfaces B: Biointerfaces, 2005, 40, 35-43.	2.5	9
88	Development and Characterization of Dual Growth Factor Loaded <l>ln</l> Gelling Biopolymeric System for Tissue Engineering Applications. Journal of Biomaterials and Tissue Engineering, 2012, 2, 67-75.	0.0	9
89	Non-invasive transferrin targeted nanovesicles sensitize resistant glioblastoma multiforme tumors and improve survival in orthotopic mouse models. Nanoscale, 2021, 14, 108-126.	2.8	9
90	Nanotechnology Approaches for Rapid Detection and Theranostics of Antimicrobial Resistant Bacterial Infections. ACS Biomaterials Science and Engineering, 2022, 8, 2232-2257.	2.6	9

#	Article	IF	Citations
91	Effect of temperature on surface properties of cervical tissue homogenate and organic phase monolayers. Colloids and Surfaces B: Biointerfaces, 2007, 60, 12-18.	2.5	8
92	Effect of mycolic acid on surface activity of binary surfactant lipid monolayers. Journal of Colloid and Interface Science, 2008, 328, 288-298.	5.0	8
93	Aerosol Delivery of Paclitaxel-Containing Self-Assembled Nanocochleates for Treating Pulmonary Metastasis: An Approach Supporting Pulmonary Mechanics. ACS Biomaterials Science and Engineering, 2021, 7, 144-156.	2.6	8
94	Levonorgestrel Microneedle Array Patch for Sustained Release Contraception: Formulation, Optimization and In Vivo Characterization. Molecules, 2022, 27, 2349.	1.7	8
95	Effect of meconium on surface properties of surfactant monolayers and liposomes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 370, 6-14.	2.3	7
96	Loco-regional radiosensitizing nanoparticles-in-gel augments head and neck cancer chemoradiotherapy. Journal of Controlled Release, 2022, 343, 288-302.	4.8	7
97	Apoptotic cascade inspired lipid nanovesicles show synergism with encapsulated paclitaxel in chemoresistant colon carcinoma. Nanomedicine, 2014, 9, 1789-1805.	1.7	6
98	Cytotoxic Helix-Rich Oligomer Formation by Melittin and Pancreatic Polypeptide. PLoS ONE, 2015, 10, e0120346.	1.1	6
99	Nanotechnology-based strategies as novel therapies in gliomas. Therapeutic Delivery, 2018, 9, 571-592.	1.2	6
100	Development and evaluation of anti-oxidant and anti-inflammatory drugs loaded lung surfactants. Soft Matter, 2012, 8, 11911.	1.2	5
101	Development of color changing polydiacetylene-based biomimetic nanovesicle platforms for quick detection of membrane permeability across the blood brain barrier. Nanoscale, 2020, 12, 8898-8908.	2.8	5
102	Ultrasound Augments On-demand Breast Tumor Radiosensitization and Apoptosis Through a Tri-responsive Combinatorial Delivery Theranostic Platform. Nanoscale, 2021, 13, 17077-17092.	2.8	5
103	Clinical Toxicity of Nanomedicines. , 2020, , 533-560.		5
104	Poly $\hat{l}\mu$ -Caprolactone Nanoparticles for Sustained Intra-Articular Immune Modulation in Adjuvant-Induced Arthritis Rodent Model. Pharmaceutics, 2022, 14, 519.	2.0	5
105	Poly(N-isopropylacrylamide) based polymer nanogels for drug delivery applications. , 2011, , .		4
106	Development of dualâ€triggered <i>in situ</i> gelling scaffolds for tissue engineering. Polymer International, 2014, 63, 1593-1599.	1.6	4
107	Surface-active drug loaded lipopolymeric nanohybrid aerosol therapy: potential non-invasive way to mitigate lipopolysaccharide mediated inflammation in murine lungs. RSC Advances, 2015, 5, 9683-9694.	1.7	4
108	Mitigation of Hydrochloric Acid (HCl)-Induced Lung Injury in Mice by Aerosol Therapy of Surface-Active Nanovesicles Containing Antioxidant and Anti-inflammatory Drugs. ACS Applied Bio Materials, 2019, 2, 5379-5389.	2.3	4

#	Article	IF	Citations
109	Development and Implementation of Liposomal Encapsulated Micronutrient Fortified Body Oil Intervention for Infant Massage: An Innovative Concept to Prevent Micronutrient Deficiencies in Children. Frontiers in Public Health, 2020, 8, 567689.	1.3	4
110	Magnetic Liposomes and Hydrogels towards Cancer Therapy. , 2012, , 479-498.		4
111	Advances in Sub-Micron Particle Based Aerosol Strategies for Efficient Systemic Delivery of Therapeutic Agents. Current Pharmaceutical Design, 2016, 22, 2470-2480.	0.9	4
112	Interfacial properties as predictors of radioresistance in cervical cancer. Journal of Colloid and Interface Science, 2007, 314, 63-70.	5.0	3
113	Inhibitory effects of mycobacterial cell wall lipids on bovine lung surfactant extract: An in vitro study at the air–aqueous interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 338, 7-14.	2.3	2
114	Stimuli-responsive polymers for image-guided therapeutic applications. , 2019, , 219-245.		2
115	Development of a dual growth factor loaded biodegradable hydrogel and its evaluation on osteoblast differentiation in vitro. Materials Research Society Symposia Proceedings, 2011, 1312, 1.	0.1	1
116	Thermosensitive gold-liposome hybrid nanostructures for photothermal therapy of cancer. , 2012, , .		1
117	Nanotechnology: a versatile aid in our fight against AIDS. Nanomedicine, 2013, 8, 675-677.	1.7	1
118	Efficacy of transdermal delivery of liposomal micronutrients through body oil massage on neurodevelopmental and micronutrient deficiency status in infants: results of a randomized placebo-controlled clinical trial. BMC Nutrition, 2021, 7, 48.	0.6	1
119	Phospholipid and menthol based nanovesicle impregnated transdermal patch for nutraceutical delivery to diminish folate and iron deficiency. Biomedical Materials (Bristol), 2022, 17, 044101.	1.7	1
120	Vesicular Lipid Nanoparticles (Liposomes) for the Treatment of Medical Device Infections. Materials Research Society Symposia Proceedings, 2011, 1316, 1.	0.1	0
121	Nanoparticle aerosols: boon or bane for breathing?. Nanomedicine, 2012, 7, 795-798.	1.7	0
122	Hydrogel-Based Therapies for Cardiovascular Diseases. , 2021, , 399-427.		0
123	Title is missing!. , 2020, 16, e1009016.		0
124	Title is missing!. , 2020, 16, e1009016.		0
125	Title is missing!. , 2020, 16, e1009016.		0
126	Title is missing!. , 2020, 16, e1009016.		0

#	Article	IF	CITATIONS
127	Title is missing!. , 2020, 16, e1009016.		O
128	In vivo efficacy & Drug Delivery Science and Technology, 2022, 74, 103568.	1.4	0