
Ning Yao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5202255/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A framework to quantify uncertainty of crop model parameters and its application in arid Northwest China. Agricultural and Forest Meteorology, 2022, 316, 108844.	4.8	4
2	Spatiotemporal Characteristics of Dryness/Wetness in the Wine Regions of China from 1981 to 2015. Agronomy, 2022, 12, 843.	3.0	2
3	Differences in Spatiotemporal Variability of Potential and Reference Crop Evapotranspirations. Water (Switzerland), 2022, 14, 988.	2.7	Ο
4	Response of wheat and maize growth-yields to meteorological and agricultural droughts based on standardized precipitation evapotranspiration indexes and soil moisture deficit indexes. Agricultural Water Management, 2022, 266, 107566.	5.6	19
5	Better Drought Index between SPEI and SMDI and the Key Parameters in Denoting Drought Impacts on Spring Wheat Yields in Qinghai, China. Agronomy, 2022, 12, 1552.	3.0	5
6	Monitoring monthly soil moisture conditions in China with temperature vegetation dryness indexes based on an enhanced vegetation index and normalized difference vegetation index. Theoretical and Applied Climatology, 2021, 143, 159-176.	2.8	20
7	Projection of the climate change effects on soil water dynamics of summer maize grown in water repellent soils using APSIM and HYDRUS-1D models. Computers and Electronics in Agriculture, 2021, 185, 106142.	7.7	18
8	Optimizing Sowing Date and Planting Density Can Mitigate the Impacts of Future Climate on Maize Yield: A Case Study in the Guanzhong Plain of China. Agronomy, 2021, 11, 1452.	3.0	14
9	Influence of the accuracy of reference crop evapotranspiration on drought monitoring using standardized precipitation evapotranspiration index in mainland China. Land Degradation and Development, 2020, 31, 266-282.	3.9	21
10	Drought evolution indicated by meteorological and remote-sensing drought indices under different land cover types in China. Environmental Science and Pollution Research, 2020, 27, 4258-4274.	5.3	35
11	Projections of drought characteristics in China based on a standardized precipitation and evapotranspiration index and multiple GCMs. Science of the Total Environment, 2020, 704, 135245.	8.0	126
12	Impacts of multi-timescale SPEI and SMDI variations on winter wheat yields. Agricultural Systems, 2020, 185, 102955.	6.1	39
13	National-Scale Variation and Propagation Characteristics of Meteorological, Agricultural, and Hydrological Droughts in China. Remote Sensing, 2020, 12, 3407.	4.0	26
14	Trends, change points and spatial variability in extreme precipitation events from 1961 to 2017 in China. Hydrology Research, 2020, 51, 484-504.	2.7	21
15	Estimating crop genetic parameters for DSSAT with modified PEST software. European Journal of Agronomy, 2020, 115, 126017.	4.1	20
16	Spatiotemporal variability of standardized precipitation evapotranspiration index in mainland China over 1961–2016. International Journal of Climatology, 2020, 40, 4781-4799.	3.5	21
17	The Responses of Maize Yield and Water Use to Growth Stage-Based Irrigation on the Loess Plateau in China. International Journal of Plant Production, 2020, 14, 621-633.	2.2	15
18	Historical and future projected frequency of extreme precipitation indicators using the optimized cumulative distribution functions in China. Journal of Hydrology, 2019, 579, 124170.	5.4	20

Ning Yao

#	Article	IF	CITATIONS
19	Soil water repellency decreases summer maize growth. Agricultural and Forest Meteorology, 2019, 266-267, 1-11.	4.8	20
20	Future projections of extreme temperature events in different sub-regions of China. Atmospheric Research, 2019, 217, 150-164.	4.1	58
21	Probabilistic modelling of drought events in China via 2-dimensional joint copula. Journal of Hydrology, 2018, 559, 373-391.	5.4	72
22	Drought evolution, severity and trends in mainland China over 1961–2013. Science of the Total Environment, 2018, 616-617, 73-89.	8.0	176
23	Effects of changing climate on reference crop evapotranspiration over 1961–2013 in Xinjiang, China. Theoretical and Applied Climatology, 2018, 131, 349-362.	2.8	8
24	Bias correction of the observed daily precipitation and reâ€division of climatic zones in China. International Journal of Climatology, 2018, 38, 3369-3387.	3.5	17
25	Bias correction of precipitation data and its effects on aridity and drought assessment in China over 1961–2015. Science of the Total Environment, 2018, 639, 1015-1027.	8.0	42
26	Spatiotemporal variability of four precipitation-based drought indices in Xinjiang, China. Theoretical and Applied Climatology, 2017, 129, 1017-1034.	2.8	33
27	Spatial comparability of drought characteristics and related return periods in mainland China over 1961–2013. Journal of Hydrology, 2017, 550, 549-567.	5.4	137
28	Influences of removing linear and nonlinear trends from climatic variables on temporal variations of annual reference crop evapotranspiration in Xinjiang, China. Science of the Total Environment, 2017, 592, 680-692.	8.0	28