Guijiang Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5202237/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Semiconductivity and high stability in centimetric two-dimensional bismuth–silver hybrid double perovskites. Materials Chemistry Frontiers, 2022, 6, 2135-2142.	3.2	3
2	Asymmetric <i>Tris</i> -Heteroleptic Cyclometalated Phosphorescent Iridium(III) Complexes: An Emerging Class of Metallophosphors. Accounts of Materials Research, 2022, 3, 830-842.	5.9	36
3	Red-emitting IrIII(C^N)2(P-donor ligand)Cl-type complexes showing aggregation-induced phosphorescent emission (AIPE) behavior for both red and white OLEDs. Dyes and Pigments, 2022, 205, 110538.	2.0	5
4	AIE-active Pt(II) complexes based on a three-ligand molecular framework for high performance solution-processed OLEDs. Chemical Engineering Journal, 2022, 449, 137457.	6.6	5
5	Universal polymeric hosts adopting cardo-type backbone prepared by palladium-free catalyst with precisely controlled triplet energy levels and their application for highly efficient solution-processed phosphorescent organic light-emitting devices. Chemical Engineering Journal, 2021, 406, 126717.	6.6	5
6	Optimizing molecular rigidity and thermally activated delayed fluorescence (TADF) behavior of phosphoryl center π-conjugated heterocycles-based emitters by tuning chemical features of the tether groups. Chemical Engineering Journal, 2021, 413, 127445.	6.6	13
7	Efficient dinuclear Pt(<scp>ii</scp>) complexes based on the triphenylphosphine oxide scaffold for high performance solution-processed OLEDs. Journal of Materials Chemistry C, 2021, 9, 5373-5378.	2.7	10
8	Highly efficient solution-processed pure yellow OLEDs based on dinuclear Pt(<scp>ii</scp>) complexes. Materials Chemistry Frontiers, 2021, 5, 5698-5705.	3.2	9
9	Mono-, di- and tri-nuclear Pt ^{II} (C^N)(N-donor ligand)Cl complexes showing aggregation-induced phosphorescent emission (AIPE) behavior for efficient solution-processed organic light-emitting devices. Materials Chemistry Frontiers, 2021, 5, 4160-4173.	3.2	2
10	lr ^{III} (C^N) ₂ (P-donor ligand)Cl-type complexes bearing functional groups and showing aggregation-induced phosphorescence emission (AIPE) behavior for highly efficient OLEDs. Journal of Materials Chemistry C, 2021, 9, 12330-12341.	2.7	4
11	Triphenylamine-based trinuclear Pt(II) complexes for solution-processed OLEDs displaying efficient pure yellow and red emissions. Organic Electronics, 2021, 91, 106101.	1.4	9
12	Developing Efficient Dinuclear Pt(II) Complexes Based on the Triphenylamine Core for High-Efficiency Solution-Processed OLEDs. ACS Applied Materials & Interfaces, 2021, 13, 36020-36032.	4.0	7
13	Stability Improvement of Tinâ€Based Halide Perovskite by Precursorâ€Solution Regulation with Dualâ€Functional Reagents. Advanced Functional Materials, 2021, 31, 2104344.	7.8	47
14	Crack Suppression in Conductive Film by Amyloid‣ike Protein Aggregation toward Flexible Device. Advanced Materials, 2021, 33, e2104187.	11.1	27
15	Aggregation-induced phosphorescence emission (AIPE) behaviors in Pt ^{II} (C^N)(N-donor) Tj ETQq1 skeleton and their optoelectronic properties. Journal of Materials Chemistry C, 2021, 9, 2334-2349.	1 0.784314 2.7	l rgBT /Over 24
16	Manipulating MLCT transition character with ppy-type four-coordinate organoboron skeleton for highly efficient long-wavelength Ir-based phosphors in organic light-emitting diodes. Journal of Materials Chemistry C, 2021, 9, 12650-12660.	2.7	9
17	Two-dimensional semiconducting Cs(<scp>i</scp>)/Bi(<scp>iii</scp>) bimetallic iodide hybrids for light detection. Materials Chemistry Frontiers, 2021, 5, 973-978.	3.2	4
18	Stable two-dimensional lead iodide hybrid materials for light detection and broadband photoluminescence. Materials Chemistry Frontiers, 2021, 6, 71-77,	3.2	1

#	Article	IF	CITATIONS
19	Dinuclear Ir(III) complex based on different flanking and bridging cyclometalated ligands: An impressive molecular framework for developing high performance phosphorescent emitters. Chemical Engineering Journal, 2020, 391, 123505.	6.6	17
20	Unsymmetric 2-phenylpyridine (ppy)-type cyclometalated Ir(<scp>iii</scp>) complexes bearing both 5,9-dioxa-13 <i>b</i> -boranaphtho[3,2,1- <i>de</i>]anthracene and phenylsulfonyl groups for tuning optoelectronic properties and electroluminescence abilities. Inorganic Chemistry Frontiers, 2020, 7, 1651-1666.	3.0	9
21	The synthesis of cyclometalated platinum(<scp>ii</scp>) complexes with benzoaryl-pyridines as C^N ligands for investigating their photophysical, electrochemical and electroluminescent properties. Dalton Transactions, 2020, 49, 15633-15645.	1.6	7
22	Promising functional two-dimensional lamellar metal thiophosphates: synthesis strategies, properties and applications. Materials Horizons, 2020, 7, 3131-3160.	6.4	26
23	Unsymmetric Heteroleptic Ir(III) Complexes with 2-Phenylquinoline and Coumarin-Based Ligand Isomers for Tuning Character of Triplet Excited States and Achieving High Electroluminescent Efficiencies. Inorganic Chemistry, 2020, 59, 12362-12374.	1.9	13
24	Optimized trade-off between electroluminescent stability and efficiency in solution-processed WOLEDs adopting functional iridium(III) complexes with 9-phenyl-9-phosphafluorene oxide (PhFIPO) moiety. Organic Electronics, 2020, 84, 105797.	1.4	7
25	Strategically Formulating Aggregationâ€Induced Emissionâ€Active Phosphorescent Emitters by Restricting the Coordination Skeletal Deformation of Pt(II) Complexes Containing Two Independent Monodentate Ligands. Advanced Optical Materials, 2020, 8, 2000079.	3.6	26
26	Phosphorescent cyanide sensor based on a 2-phenylpyridine(ppy)-type cyclometalated Ir(III) complex bearing dimesitylboron group with concentration distinguishing ability. Journal of Organometallic Chemistry, 2020, 917, 121274.	0.8	2
27	Piperidine-induced Switching of the direct band gaps of Ag(<scp>i</scp>)/Bi(<scp>iii</scp>) bimetallic iodide double perovskites. Journal of Materials Chemistry C, 2020, 8, 5349-5354.	2.7	34
28	Iridium(<scp>iii</scp>) complexes with the dithieno[3,2- <i>b</i> :2′,3′- <i>d</i>]phosphole oxide group and their high optical power limiting performances. Dalton Transactions, 2020, 49, 4967-4976.	1.6	9
29	Template effects in Cu(<scp>i</scp>)–Bi(<scp>iii</scp>) iodide double perovskites: a study of crystal structure, film orientation, band gap and photocurrent response. Journal of Materials Chemistry A, 2020, 8, 7288-7296.	5.2	33
30	Fluoro-benzenesulfonyl-functionalized 2-phenylthiazole-type iridium(<scp>iii</scp>) complexes for efficient solution-processed organic light-emitting diodes. Journal of Materials Chemistry C, 2020, 8, 10390-10400.	2.7	7
31	Highly Efficient Deep-Red Organic Light-Emitting Devices Based on Asymmetric Iridium(III) Complexes with the Thianthrene 5,5,10,10-Tetraoxide Moiety. ACS Applied Materials & Interfaces, 2019, 11, 26152-26164.	4.0	52
32	Organic Emitters with a Rigid 9-Phenyl-9-phosphafluorene Oxide Moiety as the Acceptor and Their Thermally Activated Delayed Fluorescence Behavior. ACS Applied Materials & Interfaces, 2019, 11, 27112-27124.	4.0	35
33	A Sublimable Dinuclear Cuprous Complex Showing Selective Luminescence Vapochromism in the Crystalline State. Inorganic Chemistry, 2019, 58, 14478-14489.	1.9	26
34	Asymmetric thermally activated delayed fluorescence (TADF) emitters with 5,9-dioxa-13 <i>b</i> -boranaphtho[3,2,1- <i>de</i>]anthracene (OBA) as the acceptor and highly efficient blue-emitting OLEDs. Journal of Materials Chemistry C, 2019, 7, 11953-11963.	2.7	58
35	Aggregation-induced emission triggered by the radiative-transition-switch of a cyclometallated Pt(<scp>ii</scp>) complex. Journal of Materials Chemistry C, 2019, 7, 12552-12559.	2.7	30
36	High performance solution-processed organic yellow light-emitting devices and fluoride ion sensors based on a versatile phosphorescent Ir(<scp>iii</scp>) complex. Materials Chemistry Frontiers, 2019, 3, 376-384.	3.2	17

#	Article	IF	CITATIONS
37	Photophysical properties and optical power limiting ability of Pt(II) polyynes bearing fluorene-type ligands with ethynyl units at different positions. Journal of Organometallic Chemistry, 2019, 895, 28-36.	0.8	7
38	Towards high performance solution-processed orange organic light-emitting devices: precisely-adjusting properties of Ir(<scp>iii</scp>) complexes by reasonably engineering the asymmetric configuration with second functionalized cyclometalating ligands. Journal of Materials Chemistry C, 2019, 7, 8836-8846.	2.7	20
39	Isomers of Coumarin-Based Cyclometalated Ir(III) Complexes with Easily Tuned Phosphorescent Color and Features for Highly Efficient Organic Light-Emitting Diodes. Inorganic Chemistry, 2019, 58, 7393-7408.	1.9	23
40	Novel Emission Colorâ€Tuning Strategies in Heteroleptic Phosphorescent Ir(III) and Pt(II) Complexes. Chemical Record, 2019, 19, 1710-1728.	2.9	29
41	Strategy for achieving efficient electroluminescence with reduced efficiency roll-off: enhancement of hot excitons spin mixing and restriction of internal conversion by twisted structure regulation using an anthracene derivative. Journal of Materials Chemistry C, 2019, 7, 5604-5614.	2.7	17
42	Enhancing Molecular Aggregations by Intermolecular Hydrogen Bonds to Develop Phosphorescent Emitters for Highâ€Performance Nearâ€Infrared OLEDs. Advanced Science, 2019, 6, 1801930.	5.6	78
43	Achieving High-Performance Solution-Processed Orange OLEDs with the Phosphorescent Cyclometalated Trinuclear Pt(II) Complex. ACS Applied Materials & Interfaces, 2018, 10, 10227-10235.	4.0	55
44	Diarylboronâ€Based Asymmetric Redâ€Emitting Ir(III) Complex for Solutionâ€Processed Phosphorescent Organic Lightâ€Emitting Diode with External Quantum Efficiency above 28%. Advanced Science, 2018, 5, 1701067.	5.6	76
45	Cyclometalated Platinum Complexes with Aggregation-Induced Phosphorescence Emission Behavior and Highly Efficient Electroluminescent Ability. Chemistry of Materials, 2018, 30, 929-946.	3.2	64
46	Critical Role Played by the Phosphorescent Ir(III) Dendrimers in Solution-Processed Highly Efficient OLEDs. Current Organic Chemistry, 2018, 22, 1949-1950.	0.9	0
47	New heterobimetallic Au(<scp>i</scp>)–Pt(<scp>ii</scp>) polyynes achieving a good trade-off between transparency and optical power limiting performance. Journal of Materials Chemistry C, 2018, 6, 11416-11426.	2.7	17
48	Novel Au ^I polyynes and their high optical power limiting performances both in solution and in prototype devices. Journal of Materials Chemistry C, 2018, 6, 6023-6032.	2.7	28
49	High Efficiency Fluorescent Electroluminescence with Extremely Low Efficiency Rollâ€Off Generated by a Donor–Bianthracene–Acceptor Structure: Utilizing Perpendicular Twisted Intramolecular Charge Transfer Excited State. Advanced Optical Materials, 2018, 6, 1800060.	3.6	17
50	Asymmetric tris-heteroleptic iridium(<scp>iii</scp>) complexes containing three different 2-phenylpyridine-type ligands: a new strategy for improving the electroluminescence ability of phosphorescent emitters. Journal of Materials Chemistry C, 2018, 6, 9453-9464.	2.7	23
51	Asymmetric Heteroleptic Ir(III) Phosphorescent Complexes with Aromatic Selenide and Selenophene Groups: Synthesis and Photophysical, Electrochemical, and Electrophosphorescent Behaviors. Inorganic Chemistry, 2018, 57, 11027-11043.	1.9	20
52	High Triplet Energy Level Achieved by Tuning the Arrangement of Building Blocks in Phosphorescent Polymer Backbones for Furnishing High Electroluminescent Performances in Both Blue and White Organic Light-Emitting Devices. ACS Applied Materials & Interfaces, 2017, 9, 16360-16374.	4.0	27
53	Highly efficient electroluminescent Pt ^{II} ppy-type complexes with monodentate ligands. Chemical Communications, 2017, 53, 7581-7584.	2.2	31
54	Bis-Zn ^{II} salphen complexes bearing pyridyl functionalized ligands for efficient organic light-emitting diodes (OLEDs). Dalton Transactions, 2017, 46, 6098-6110.	1.6	28

#	Article	IF	CITATIONS
55	Platinum(<scp>ii</scp>) acetylide complexes with star- and V-shaped configurations possessing good trade-off between optical transparency and optical power limiting performance. Journal of Materials Chemistry C, 2017, 5, 11672-11682.	2.7	18
56	Coordination polymers based on bis-Zn ^{II} salphen complexes and functional ditopic ligands for efficient polymer light-emitting diodes (PLEDs). Polymer Chemistry, 2017, 8, 6368-6377.	1.9	9
57	Novel iridium(<scp>iii</scp>) complexes bearing dimesitylboron groups with nearly 100% phosphorescent quantum yields for highly efficient organic light-emitting diodes. Journal of Materials Chemistry C, 2017, 5, 7871-7883.	2.7	49
58	Homoleptic thiazole-based Ir ^{III} phosphorescent complexes for achieving both high EL efficiencies and an optimized trade-off among the key parameters of solution-processed WOLEDs. Journal of Materials Chemistry C, 2017, 5, 208-219.	2.7	21
59	Optimized trade-offs between triplet emission and transparency in Pt(ii) acetylides through phenylsulfonyl units for achieving good optical power limiting performance. Journal of Materials Chemistry C, 2016, 4, 5626-5633.	2.7	23
60	Pyrimidine-Based Mononuclear and Dinuclear Iridium(III) Complexes for High Performance Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2016, 8, 33874-33887.	4.0	53
61	Asymmetric <i>tris</i> -Heteroleptic Iridium ^{III} Complexes Containing a 9-Phenyl-9-phosphafluorene Oxide Moiety with Enhanced Charge Carrier Injection/Transporting Properties for Highly Efficient Solution-Processed Organic Light-Emitting Diodes. Chemistry of Materials, 2016, 28, 8556-8569.	3.2	58
62	Photophysical and optical power limiting behaviors of Au(I) acetylides with diethynyl aromatic ligands showing different electronic features. Journal of Organometallic Chemistry, 2016, 804, 80-86.	0.8	14
63	From Mononuclear to Dinuclear Iridium(III) Complex: Effective Tuning of the Optoelectronic Characteristics for Organic Light-Emitting Diodes. Inorganic Chemistry, 2016, 55, 1720-1727.	1.9	127
64	Managing Charge and Exciton Transporting Behavior in White Organic Lightâ€Emitting Devices for High Power Efficiency and Superior Color Stability. Advanced Electronic Materials, 2015, 1, 1400040.	2.6	6
65	The molecular picture of amplified spontaneous emission of star-shaped functionalized-truxene derivatives. Journal of Materials Chemistry C, 2015, 3, 7004-7013.	2.7	12
66	<i>tris</i> â€Heteroleptic Cyclometalated Iridium(III) Complexes with Ambipolar or Electron Injection/Transport Features for Highly Efficient Electrophosphorescent Devices. Chemistry - an Asian Journal, 2015, 10, 252-262.	1.7	53
67	Enhancing the electroluminescence performances of novel platinum(ii) polymetallayne-based phosphorescent polymers through employing functionalized IrIII phosphorescent units and facilitating triplet energy transfer. RSC Advances, 2015, 5, 12100-12110.	1.7	11
68	Recent Advances in Solutionâ€Processable Dendrimers for Highly Efficient Phosphorescent Organic Lightâ€Emitting Diodes (PHOLEDs). Asian Journal of Organic Chemistry, 2015, 4, 394-429.	1.3	105
69	Functionalization of phosphorescent emitters and their host materials by main-group elements for phosphorescent organic light-emitting devices. Chemical Society Reviews, 2015, 44, 8484-8575.	18.7	752
70	Facilitating triplet energy-transfer in polymetallayne-based phosphorescent polymers with iridium(III) units and the great potential in achieving high electroluminescent performances. Journal of Organometallic Chemistry, 2015, 794, 1-10.	0.8	11
71	Silafluorene moieties as promising building blocks for constructing wide-energy-gap host materials of blue phosphorescent organic light-emitting devices. Science China Chemistry, 2015, 58, 993-998.	4.2	6
72	Effective blocking of the molecular aggregation of novel truxene-based emitters with spirobifluorene and electron-donating moieties for furnishing highly efficient non-doped blue-emitting OLEDs. Journal of Materials Chemistry C, 2015, 3, 5783-5794.	2.7	41

#	Article	IF	CITATIONS
73	Platinum(ii) polymetallayne-based phosphorescent polymers with enhanced triplet energy-transfer: synthesis, photophysical, electrochemistry, and electrophosphorescent investigation. RSC Advances, 2015, 5, 36507-36519.	1.7	20
74	Synthesis of 2,2′-biimidazole-based platinum(<scp>ii</scp>) polymetallaynes and tuning their fluorescent response behaviors to Cu ²⁺ ions through optimizing the configuration of the organic spacers and steric effect. RSC Advances, 2015, 5, 88758-88766.	1.7	8
75	Phosphorescent Iridium(III) Complexes Bearing Fluorinated Aromatic Sulfonyl Group with Nearly Unity Phosphorescent Quantum Yields and Outstanding Electroluminescent Properties. ACS Applied Materials & Interfaces, 2015, 7, 24703-24714.	4.0	57
76	Recent advances of the emitters for high performance deep-blue organic light-emitting diodes. Journal of Materials Chemistry C, 2015, 3, 913-944.	2.7	492
77	Novel Red Phosphorescent Polymers Bearing Both Ambipolar and Functionalized Ir ^{III} Phosphorescent Moieties for Highly Efficient Organic Light-Emitting Diodes. Macromolecular Rapid Communications, 2015, 36, 71-78.	2.0	16
78	Effect of diphenylamine substituent on charge-transfer absorption features of the iridium complexes and application in dye-sensitized solar cell. Journal of Organometallic Chemistry, 2015, 775, 55-59.	0.8	8
79	A Nonâ€Doped Phosphorescent Organic Lightâ€Emitting Device with Above 31% External Quantum Efficiency. Advanced Materials, 2014, 26, 8107-8113.	11.1	146
80	Phosphorescent Platinum(II) Complexes Bearing 2-Vinylpyridine-type Ligands: Synthesis, Electrochemical and Photophysical Properties, and Tuning of Electrophosphorescent Behavior by Main-Group Moieties. Inorganic Chemistry, 2014, 53, 12986-13000.	1.9	34
81	Recent design tactics for high performance white polymer light-emitting diodes. Journal of Materials Chemistry C, 2014, 2, 1760.	2.7	247
82	Trifunctional IrIII ppy-type asymmetric phosphorescent emitters with ambipolar features for highly efficient electroluminescent devices. Chemical Communications, 2014, 50, 2473.	2.2	78
83	Fluorinated 9,9â€2-bianthracene derivatives with twisted intramolecular charge-transfer excited states as blue host materials for high-performance fluorescent electroluminescence. Journal of Materials Chemistry C, 2014, 2, 9375-9384.	2.7	23
84	Novel phosphorescent polymers containing both ambipolar segments and functionalized Ir ^{III} phosphorescent moieties: synthesis, photophysical, redox, and electrophosphorescence investigation. Journal of Materials Chemistry C, 2014, 2, 9523-9535.	2.7	17
85	Tris(cyclometalated) Iridium(III) Phosphorescent Complexes with 2â€Phenylthiazoleâ€Type Ligands: Synthesis, Photophysical, Redox and Electrophosphorescent Behavior. European Journal of Inorganic Chemistry, 2013, 2013, 4754-4763.	1.0	21
86	lridium (III) complexes with 5,5-dimethyl-3-(pyridin-2-yl)cyclohex-2-enone ligands as sensitizer for dye-sensitized solar cells. Organic Electronics, 2013, 14, 3297-3305.	1.4	23
87	Highly efficient deep-blue organic electroluminescent devices (CIEy â‰^ 0.08) doped with fluorinated 9,9′-bianthracene derivatives (fluorophores). Journal of Materials Chemistry C, 2013, 1, 8117.	2.7	55
88	Stable amorphous bis(diarylamino)biphenyl derivatives as hole-transporting materials in OLEDs. Electronic Materials Letters, 2013, 9, 655-661.	1.0	10
89	Dynamic dual stage phosphorescence chromatic change in a diborylated iridium phosphor for fluoride ion sensing with concentration discriminating capability. RSC Advances, 2013, 3, 6553.	1.7	35
90	Effective phosphorescence quenching in borylated Pt ^{II} ppy-type phosphors and their application as I ^{â^'} ion sensors in aqueous medium. Chemical Communications, 2013, 49, 4406-4408.	2.2	32

#	Article	IF	CITATIONS
91	<i>Highly Efficient Phosphorescent Materials Based on Platinum Complexes and Their Application in Organic Light-Emitting Devices (OLEDs)</i> . Platinum Metals Review, 2013, 57, 2-16.	1.5	65
92	Fluorinated 9,9′-spirobifluorene derivatives as host materials for highly efficient blue organic light-emitting devices. Journal of Materials Chemistry C, 2013, 1, 2183.	2.7	51
93	Versatile phosphorescent color tuning of highly efficient borylated iridium(iii) cyclometalates by manipulating the electron-accepting capacity of the dimesitylboron group. Journal of Materials Chemistry C, 2013, 1, 3317.	2.7	70
94	Ambipolar organic light-emitting electrochemical transistor based on a heteroleptic charged iridium(III) complex. Applied Physics Letters, 2013, 102, .	1.5	20
95	Versatile Fluorinated Derivatives of Triphenylamine as Hole-Transporters and Blue-Violet Emitters in Organic Light-Emitting Devices. Journal of Physical Chemistry C, 2012, 116, 20504-20512.	1.5	47
96	Structural, Electronic and Optical Properties of Multifunctional Iridium(III) and Platinum(II) Metallophosphors for Organic Lightâ€Emitting Diodes. Chinese Journal of Chemistry, 2012, 30, 2431-2439.	2.6	1
97	Manipulating chargeâ€transfer character and tuning emission color with electronâ€withdrawing mainâ€group moieties in iridiumâ€based electrophosphors: a theoretical investigation. Journal of Physical Organic Chemistry, 2012, 25, 1351-1358.	0.9	1
98	Thiazole-based metallophosphors of iridium with balanced carrier injection/transporting features and their two-colour WOLEDs fabricated by both vacuum deposition and solution processing-vacuum deposition hybrid strategy. Journal of Materials Chemistry, 2012, 22, 7136.	6.7	64
99	Simple Tuning of the Optoelectronic Properties of Ir ^{III} and Pt ^{II} Electrophosphors Based on Linkage Isomer Formation with a Naphthylthiazolyl Moiety. European Journal of Inorganic Chemistry, 2012, 2012, 2278-2288.	1.0	28
100	New Design Tactics in OLEDs Using Functionalized 2â€Phenylpyridineâ€Type Cyclometalates of Iridium(III) and Platinum(II). Chemistry - an Asian Journal, 2011, 6, 1706-1727.	1.7	353
101	Inside Cover: New Design Tactics in OLEDs Using Functionalized 2-Phenylpyridine-Type Cyclometalates of Iridium(III) and Platinum(II) (Chem. Asian J. 7/2011). Chemistry - an Asian Journal, 2011, 6, 1630-1630.	1.7	3
102	Highly efficient pure white polymer light-emitting devices based on poly(N-vinylcarbazole) doped with blue and red phosphorescent dyes. Science China Chemistry, 2011, 54, 671-677.	4.2	8
103	A Robust Yellowâ€Emitting Metallophosphor with Electronâ€Injection/â€Transporting Traits for Highly Efficient White Organic Lightâ€Emitting Diodes. ChemPhysChem, 2011, 12, 2836-2843.	1.0	31
104	Electrophosphorescent Heterobimetallic Oligometallaynes and Their Applications in Solutionâ€Processed Organic Lightâ€Emitting Devices. Chemistry - an Asian Journal, 2010, 5, 2405-2414.	1.7	38
105	Recent progress and current challenges in phosphorescent white organic light-emitting diodes (WOLEDs). Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2010, 11, 133-156.	5.6	299
106	Metallophosphors of platinum with distinct main-group elements: a versatile approach towards color tuning and white-light emission with superior efficiency/color quality/brightness trade-offs. Journal of Materials Chemistry, 2010, 20, 7472.	6.7	210
107	Symmetric Versus Unsymmetric Platinum(II) Bis(aryleneethynylene)s with Distinct Electronic Structures for Optical Power Limiting/Optical Transparency Tradeâ€off Optimization. Advanced Functional Materials, 2009, 19, 531-544.	7.8	133
108	Optical Power Limiters: Symmetric Versus Unsymmetric Platinum(II) Bis(aryleneethynylene)s with Distinct Electronic Structures for Optical Power Limiting/Optical Transparency Trade-off Optimization (Adv. Mater. 8/2009). Advanced Functional Materials, 2009, 19, NA-NA.	7.8	0

#	Article	IF	CITATIONS
109	Efficient Polymer Whiteâ€Lightâ€Emitting Devices for Solidâ€State Lighting. Advanced Materials, 2009, 21, 4181-4184.	11.1	319
110	Duplicating "sunlight―from simple WOLEDs for lighting applications. Chemical Communications, 2009, , 3574.	2.2	135
111	Manipulating Chargeâ€Transfer Character with Electronâ€Withdrawing Mainâ€Group Moieties for the Color Tuning of Iridium Electrophosphors. Advanced Functional Materials, 2008, 18, 499-511.	7.8	487
112	Robust Tris yclometalated Iridium(III) Phosphors with Ligands for Effective Charge Carrier Injection/Transport: Synthesis, Redox, Photophysical, and Electrophosphorescent Behavior. Chemistry - an Asian Journal, 2008, 3, 1830-1841.	1.7	97
113	Copper-Catalyzed Cycloaddition of Sulfonyl Azides with Alkynes to SynthesizeN-Sulfonyltriazoles â€~on Water' at Room Temperature. Chemistry - an Asian Journal, 2008, 3, 1884-1884.	1.7	0
114	Triphenylamine-Dendronized Pure Red Iridium Phosphors with Superior OLED Efficiency/Color Purity Trade-Offs. Angewandte Chemie - International Edition, 2007, 46, 1149-1151.	7.2	343
115	Synthesis, Structures and Optical Power Limiting of Some Transition Metal and Lanthanide Monoporphyrinate Complexes Containing Electron-Rich Diphenylamino Substituents. European Journal of Inorganic Chemistry, 2007, 2007, 2004-2013.	1.0	44