Esteban J Garzón C

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5201696/publications.pdf

Version: 2024-02-01

933447 1058476 28 231 10 14 citations g-index h-index papers 29 29 29 68 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A 0.05 mm \hat{A}^2 , 350 mV, 14 nW Fully-Integrated Temperature Sensor in 180-nm CMOS. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 749-753.	3.0	12
2	Hamming Distance Tolerant Content-Addressable Memory (HD-CAM) for DNA Classification. IEEE Access, 2022, 10, 28080-28093.	4.2	16
3	Performance Benchmarking of TFET and FinFET Digital Circuits from a Synthesis-Based Perspective. Electronics (Switzerland), 2022, 11, 632.	3.1	2
4	Embedded Memories for Cryogenic Applications. Electronics (Switzerland), 2022, 11, 61.	3.1	11
5	Adjusting thermal stability in double-barrier MTJ for energy improvement in cryogenic STT-MRAMs. Solid-State Electronics, 2022, 194, 108315.	1.4	2
6	A 0.6V–1.8V Compact Temperature Sensor With 0.24 °C Resolution, ±1.4 °C Inaccuracy and 1.06nJ per Conversion. IEEE Sensors Journal, 2022, 22, 11480-11488.	4.7	4
7	EDAM., 2022,,.		13
8	Voltage and Technology Scaling of DMTJ-based STT-MRAMs for Energy-Efficient Embedded Memories. , 2022, , .		1
9	AIDA: Associative In-Memory Deep Learning Accelerator. IEEE Micro, 2022, 42, 67-75.	1.8	10
10	Exploiting STT-MRAMs for Cryogenic Non-Volatile Cache Applications. IEEE Nanotechnology Magazine, 2021, 20, 123-128.	2.0	21
11	Energy Efficient Self-Adaptive Dual Mode Logic Address Decoder. Electronics (Switzerland), 2021, 10, 1052.	3.1	5
12	Simulation Analysis of DMTJ-Based STT-MRAM Operating at Cryogenic Temperatures. IEEE Transactions on Magnetics, 2021, 57, 1-6.	2.1	16
13	Ultralow Voltage FinFET- Versus TFET-Based STT-MRAM Cells for IoT Applications. Electronics (Switzerland), 2021, 10, 1756.	3.1	14
14	Gain-Cell Embedded DRAM Under Cryogenic Operation—A First Study. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2021, 29, 1319-1324.	3.1	16
15	Relaxing non-volatility for energy-efficient DMTJ based cryogenic STT-MRAM. Solid-State Electronics, 2021, 184, 108090.	1.4	12
16	Quantum capacitance transient phenomena in high-k dielectric armchair graphene nanoribbon field-effect transistor model. Solid-State Electronics, 2021, 184, 108060.	1.4	0
17	Field-Free Magnetic Tunnel Junction for Logic Operations Based on Voltage-Controlled Magnetic Anisotropy. IEEE Magnetics Letters, 2021, 12, 1-4.	1.1	4
18	Reconfigurable CMOS/STT-MTJ Non-Volatile Circuit for Logic-in-Memory Applications. , 2020, , .		13

#	Article	lF	CITATIONS
19	Assessment of STT-MRAMs based on double-barrier MTJs for cache applications by means of a device-to-system level simulation framework. The Integration VLSI Journal, 2020, 71, 56-69.	2.1	22
20	Exploiting Double-Barrier MTJs for Energy-Efficient Nanoscaled STT-MRAMs. , 2019, , .		6
21	Assessment of STT-MRAM performance at nanoscaled technology nodes using a device-to-memory simulation framework. Microelectronic Engineering, 2019, 215, 111009.	2.4	24
22	Microprocessor Design with a Direct Bluetooth Connection in 45 nm Technology Using Microwind. , 2019, , .		0
23	Evaluating the Energy Efficiency of STT-MRAMs Based on Perpendicular MTJs with Double Reference Layers. , 2019, , .		0
24	Device-to-System Level Simulation Framework for STT-DMTJ Based Cache Memory. , 2019, , .		1
25	Capacitance Extraction of 34-nm Metallurgical Channel Length MOSFET for Parasitic Assessment Using the RFCV Technique. , $2018, , .$		O
26	Fast computation of Cramer-Rao Bounds for TOA. , 2016, , .		1
27	Remote control of VNA and parameter analyzer for RFCV measurements using Python. , 2016, , .		2
28	Space-time diversity for NLOS mitigation in TDOA-based positioning systems. , 2016, , .		2