Lubica Kubikova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5201143/publications.pdf

Version: 2024-02-01

22 papers 2,688 citations

840585 11 h-index 794469 19 g-index

22 all docs 22 docs citations

times ranked

22

1800 citing authors

#	Article	IF	Citations
1	Striatal Injury Induces Overall Brain Alteration at the Pallial, Thalamic, and Cerebellar Levels. Biology, 2022, 11, 425.	1.3	1
2	The Acute Pharmacological Manipulation of Dopamine Receptors Modulates Judgment Bias in Japanese Quail. Frontiers in Physiology, 2022, 13, .	1.3	0
3	Effectivity of Two Cell Proliferation Markers in Brain of a Songbird Zebra Finch. Biology, 2020, 9, 356.	1.3	1
4	Is neurogenesis in two songbird species related to their song sequence variability?. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182872.	1.2	4
5	Neuroplasticity in the cerebello-thalamo-basal ganglia pathway: AÂlongitudinal in vivo MRI study in male songbirds. Neurolmage, 2018, 181, 190-202.	2.1	12
6	Imaging of striatal injury in a songbird brain. General Physiology and Biophysics, 2017, 36, 23-27.	0.4	3
7	Dopamine D3 receptors modulate the rate of neuronal recovery, cell recruitment in Area X, and song tempo after neurotoxic damage in songbirds. Neuroscience, 2016, 331, 158-168.	1.1	5
8	Basal ganglia function, stuttering, sequencing and repair in adult songbirds. Scientific Reports, 2014, 4, 6590.	1.6	47
9	Global view of the functional molecular organization of the avian cerebrum: Mirror images and functional columns. Journal of Comparative Neurology, 2013, 521, 3614-3665.	0.9	207
10	Global view of the functional molecular organization of the avian cerebrum: mirror images and functional columns. Journal of Comparative Neurology, 2013, 521, Spc1-Spc1.	0.9	2
11	Birdsong: From behaviour to brain. Biologia (Poland), 2010, 65, 379-387.	0.8	3
12	Dopamine receptors in a songbird brain. Journal of Comparative Neurology, 2010, 518, 741-769.	0.9	119
13	Dopamine Receptors in a Songbird Brain. Journal of Comparative Neurology, 2010, 518, spc1-spc1.	0.9	0
14	Dopaminergic system in birdsong learning and maintenance. Journal of Chemical Neuroanatomy, 2010, 39, 112-123.	1.0	54
15	Assessing visual requirements for social context-dependent activation of the songbird song system. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 279-289.	1.2	14
16	Kinetics and Pharmacology of the D1- and D2-Like Dopamine Receptors in Japanese Quail Brain. Cellular and Molecular Neurobiology, 2009, 29, 961-970.	1.7	12
17	The pallial basal ganglia pathway modulates the behaviorally driven gene expression of the motor pathway. European Journal of Neuroscience, 2007, 25, 2145-2160.	1.2	41
18	Role of the midbrain dopaminergic system in modulation of vocal brain activation by social context. European Journal of Neuroscience, 2007, 25, 3406-3416.	1.2	135

#	Article	IF	Citations
19	Avian brains and a new understanding of vertebrate brain evolution. Nature Reviews Neuroscience, 2005, 6, 151-159.	4.9	930
20	Repeated apomorphine administration alters dopamine D1 and D2 receptor densities in pigeon basal telencephalon. Experimental Brain Research, 2005, 160, 533-537.	0.7	7
21	Revised nomenclature for avian telencephalon and some related brainstem nuclei. Journal of Comparative Neurology, 2004, 473, 377-414.	0.9	1,054
22	The Avian Brain Nomenclature Forum: Terminology for a New Century in Comparative Neuroanatomy. Journal of Comparative Neurology, 2004, 473, E1-E6.	0.9	37