
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/520065/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, 2020, 181, 271-280.e8.	13.5	16,161
2	A Multibasic Cleavage Site in the Spike Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells. Molecular Cell, 2020, 78, 779-784.e5.	4.5	1,527
3	Evidence that TMPRSS2 Activates the Severe Acute Respiratory Syndrome Coronavirus Spike Protein for Membrane Fusion and Reduces Viral Control by the Humoral Immune Response. Journal of Virology, 2011, 85, 4122-4134.	1.5	963
4	SARS-CoV-2 variants B.1.351 and P.1 escape from neutralizing antibodies. Cell, 2021, 184, 2384-2393.e12.	13.5	848
5	TMPRSS2 and ADAM17 Cleave ACE2 Differentially and Only Proteolysis by TMPRSS2 Augments Entry Driven by the Severe Acute Respiratory Syndrome Coronavirus Spike Protein. Journal of Virology, 2014, 88, 1293-1307.	1.5	752
6	The Omicron variant is highly resistant against antibody-mediated neutralization: Implications for control of the COVID-19 pandemic. Cell, 2022, 185, 447-456.e11.	13.5	736
7	Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7988-7993.	3.3	679
8	Protease inhibitors targeting coronavirus and filovirus entry. Antiviral Research, 2015, 116, 76-84.	1.9	513
9	Structural Basis for Potent Neutralization of Betacoronaviruses by Single-Domain Camelid Antibodies. Cell, 2020, 181, 1004-1015.e15.	13.5	506
10	Diversity of receptors binding HIV on dendritic cell subsets. Nature Immunology, 2002, 3, 975-983.	7.0	483
11	A novel Syk-dependent mechanism of platelet activation by the C-type lectin receptor CLEC-2. Blood, 2006, 107, 542-549.	0.6	466
12	Differential Downregulation of ACE2 by the Spike Proteins of Severe Acute Respiratory Syndrome Coronavirus and Human Coronavirus NL63. Journal of Virology, 2010, 84, 1198-1205.	1.5	429
13	Nafamostat Mesylate Blocks Activation of SARS-CoV-2: New Treatment Option for COVID-19. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	394
14	Sensitivity of HIV-1 to entry inhibitors correlates with envelope/coreceptor affinity, receptor density, and fusion kinetics. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 16249-16254.	3.3	384
15	Chloroquine does not inhibit infection of human lung cells with SARS-CoV-2. Nature, 2020, 585, 588-590.	13.7	370
16	The SARS-Coronavirus-Host Interactome: Identification of Cyclophilins as Target for Pan-Coronavirus Inhibitors. PLoS Pathogens, 2011, 7, e1002331.	2.1	367
17	Influenza and SARS-Coronavirus Activating Proteases TMPRSS2 and HAT Are Expressed at Multiple Sites in Human Respiratory and Gastrointestinal Tracts. PLoS ONE, 2012, 7, e35876.	1.1	365
18	Immune responses against SARS-CoV-2 variants after heterologous and homologous ChAdOx1 nCoV-19/BNT162b2 vaccination. Nature Medicine, 2021, 27, 1525-1529.	15.2	363

#	Article	IF	CITATIONS
19	DC-SIGN and DC-SIGNR Interact with the Glycoprotein of Marburg Virus and the S Protein of Severe Acute Respiratory Syndrome Coronavirus. Journal of Virology, 2004, 78, 12090-12095.	1.5	357
20	Proteolytic activation of the SARS-coronavirus spike protein: Cutting enzymes at the cutting edge of antiviral research. Antiviral Research, 2013, 100, 605-614.	1.9	354
21	Hepatitis C Virus Glycoproteins Interact with DC-SIGN and DC-SIGNR. Journal of Virology, 2003, 77, 4070-4080.	1.5	347
22	DC-SIGN and DC-SIGNR Bind Ebola Glycoproteins and Enhance Infection of Macrophages and Endothelial Cells. Virology, 2003, 305, 115-123.	1.1	338
23	The Spike Protein of the Emerging Betacoronavirus EMC Uses a Novel Coronavirus Receptor for Entry, Can Be Activated by TMPRSS2, and Is Targeted by Neutralizing Antibodies. Journal of Virology, 2013, 87, 5502-5511.	1.5	305
24	DC-SIGNR, a DC-SIGN homologue expressed in endothelial cells, binds to human and simian immunodeficiency viruses and activates infection in trans. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 2670-2675.	3.3	296
25	TMPRSS2 Activates the Human Coronavirus 229E for Cathepsin-Independent Host Cell Entry and Is Expressed in Viral Target Cells in the Respiratory Epithelium. Journal of Virology, 2013, 87, 6150-6160.	1.5	296
26	Cleavage and Activation of the Severe Acute Respiratory Syndrome Coronavirus Spike Protein by Human Airway Trypsin-Like Protease. Journal of Virology, 2011, 85, 13363-13372.	1.5	259
27	Camostat mesylate inhibits SARS-CoV-2 activation by TMPRSS2-related proteases and its metabolite GBPA exerts antiviral activity. EBioMedicine, 2021, 65, 103255.	2.7	256
28	Susceptibility to SARS coronavirus S protein-driven infection correlates with expression of angiotensin converting enzyme 2 and infection can be blocked by soluble receptor. Biochemical and Biophysical Research Communications, 2004, 319, 1216-1221.	1.0	246
29	Discovery and Optimization of a Natural HIV-1 Entry Inhibitor Targeting the gp41 Fusion Peptide. Cell, 2007, 129, 263-275.	13.5	244
30	Expression of DC-SIGN by Dendritic Cells of Intestinal and Genital Mucosae in Humans and Rhesus Macaques. Journal of Virology, 2002, 76, 1866-1875.	1.5	243
31	DC-SIGN and CLEC-2 Mediate Human Immunodeficiency Virus Type 1 Capture by Platelets. Journal of Virology, 2006, 80, 8951-8960.	1.5	234
32	Differential N-Linked Glycosylation of Human Immunodeficiency Virus and Ebola Virus Envelope Glycoproteins Modulates Interactions with DC-SIGN and DC-SIGNR. Journal of Virology, 2003, 77, 1337-1346.	1.5	229
33	Cellular entry of the SARS coronavirus. Trends in Microbiology, 2004, 12, 466-472.	3.5	216
34	DC-SIGN Interactions with Human Immunodeficiency Virus Type 1 and 2 and Simian Immunodeficiency Virus. Journal of Virology, 2001, 75, 4664-4672.	1.5	210
35	SARS-CoV-2 variant B.1.617 is resistant to bamlanivimab and evades antibodies induced by infection and vaccination. Cell Reports, 2021, 36, 109415.	2.9	206
36	Proteolytic Activation of the 1918 Influenza Virus Hemagglutinin. Journal of Virology, 2009, 83, 3200-3211.	1.5	194

#	Article	IF	CITATIONS
37	The C-type Lectin Receptors CLEC-2 and Dectin-1, but Not DC-SIGN, Signal via a Novel YXXL-dependent Signaling Cascade. Journal of Biological Chemistry, 2007, 282, 12397-12409.	1.6	193
38	LSECtin interacts with filovirus glycoproteins and the spike protein of SARS coronavirus. Virology, 2005, 340, 224-236.	1.1	192
39	TMPRSS2 and TMPRSS4 Facilitate Trypsin-Independent Spread of Influenza Virus in Caco-2 Cells. Journal of Virology, 2010, 84, 10016-10025.	1.5	180
40	S Protein of Severe Acute Respiratory Syndrome-Associated Coronavirus Mediates Entry into Hepatoma Cell Lines and Is Targeted by Neutralizing Antibodies in Infected Patients. Journal of Virology, 2004, 78, 6134-6142.	1.5	172
41	LY6E impairs coronavirus fusion and confers immune control of viral disease. Nature Microbiology, 2020, 5, 1330-1339.	5.9	170
42	Tmprss2 Is Essential for Influenza H1N1 Virus Pathogenesis in Mice. PLoS Pathogens, 2013, 9, e1003774.	2.1	163
43	The clinically approved drugs amiodarone, dronedarone and verapamil inhibit filovirus cell entry. Journal of Antimicrobial Chemotherapy, 2014, 69, 2123-2131.	1.3	159
44	Protective mucosal immunity against SARS-CoV-2 after heterologous systemic prime-mucosal boost immunization. Nature Communications, 2021, 12, 6871.	5.8	147
45	Pharmacological Inhibition of Acid Sphingomyelinase Prevents Uptake of SARS-CoV-2 by Epithelial Cells. Cell Reports Medicine, 2020, 1, 100142.	3.3	142
46	Natural Proteolytic Processing of Hemofiltrate Cc Chemokine 1 Generates a Potent Cc Chemokine Receptor (Ccr)1 and Ccr5 Agonist with Anti-HIV Properties. Journal of Experimental Medicine, 2000, 192, 1501-1508.	4.2	138
47	Placental expression of DC-SIGN may mediate intrauterine vertical transmission of HIV. Journal of Pathology, 2001, 195, 586-592.	2.1	135
48	Functional analysis of potential cleavage sites in the MERS-coronavirus spike protein. Scientific Reports, 2018, 8, 16597.	1.6	131
49	A Single Asparagine-Linked Glycosylation Site of the Severe Acute Respiratory Syndrome Coronavirus Spike Glycoprotein Facilitates Inhibition by Mannose-Binding Lectin through Multiple Mechanisms. Journal of Virology, 2010, 84, 8753-8764.	1.5	127
50	IFITM Proteins Inhibit Entry Driven by the MERS-Coronavirus Spike Protein: Evidence for Cholesterol-Independent Mechanisms. Viruses, 2014, 6, 3683-3698.	1.5	123
51	CD4 Independence of Simian Immunodeficiency Virus Envs Is Associated with Macrophage Tropism, Neutralization Sensitivity, and Attenuated Pathogenicity. Journal of Virology, 2002, 76, 2595-2605.	1.5	122
52	Novel insights into proteolytic cleavage of influenza virus hemagglutinin. Reviews in Medical Virology, 2010, 20, 298-310.	3.9	122
53	Bitter-sweet symphony: glycan–lectin interactions in virus biology. FEMS Microbiology Reviews, 2014, 38, 598-632.	3.9	117
54	Different host cell proteases activate the SARS-coronavirus spike-protein for cell–cell and virus–cell fusion. Virology, 2011, 413, 265-274.	1.1	114

f

#	Article	IF	CITATIONS
55	Severe Fever with Thrombocytopenia Virus Glycoproteins Are Targeted by Neutralizing Antibodies and Can Use DC-SIGN as a Receptor for pH-Dependent Entry into Human and Animal Cell Lines. Journal of Virology, 2013, 87, 4384-4394.	1.5	114
56	Guanylate-Binding Proteins 2 and 5 Exert Broad Antiviral Activity by Inhibiting Furin-Mediated Processing of Viral Envelope Proteins. Cell Reports, 2019, 27, 2092-2104.e10.	2.9	112
57	Mutations in the Spike Protein of Middle East Respiratory Syndrome Coronavirus Transmitted in Korea Increase Resistance to Antibody-Mediated Neutralization. Journal of Virology, 2019, 93, .	1.5	111
58	SARS-CoV-2 neutralizing antibodies: Longevity, breadth, and evasion by emerging viral variants. PLoS Medicine, 2021, 18, e1003656.	3.9	109
59	Heterologous ChAdOx1 nCoV-19 and BNT162b2 prime-boost vaccination elicits potent neutralizing antibody responses and T cell reactivity against prevalent SARS-CoV-2 variants. EBioMedicine, 2022, 75, 103761.	2.7	104
60	Quantitative Expression and Virus Transmission Analysis of DC-SIGN on Monocyte-Derived Dendritic Cells. Journal of Virology, 2002, 76, 9135-9142.	1.5	103
61	Highly Conserved Regions within the Spike Proteins of Human Coronaviruses 229E and NL63 Determine Recognition of Their Respective Cellular Receptors. Journal of Virology, 2006, 80, 8639-8652.	1.5	101
62	Low serum neutralizing anti-SARS-CoV-2 S antibody levels in mildly affected COVID-19 convalescent patients revealed by two different detection methods. Cellular and Molecular Immunology, 2021, 18, 936-944.	4.8	98
63	A Novel Mechanism for LSECtin Binding to Ebola Virus Surface Glycoprotein through Truncated Glycans. Journal of Biological Chemistry, 2008, 283, 593-602.	1.6	93
64	Cathepsins B and L activate Ebola but not Marburg virus glycoproteins for efficient entry into cell lines and macrophages independent of TMPRSS2 expression. Virology, 2012, 424, 3-10.	1.1	93
65	The SARS-CoV-2 and other human coronavirus spike proteins are fine-tuned towards temperature and proteases of the human airways. PLoS Pathogens, 2021, 17, e1009500.	2.1	91
66	DC-SIGN and DC-SIGNR: helping hands for HIV. Trends in Immunology, 2001, 22, 643-646.	2.9	90
67	Type II transmembrane serine proteases in cancer and viral infections. Trends in Molecular Medicine, 2009, 15, 303-312.	3.5	89
68	Alpha-1 antitrypsin inhibits TMPRSS2 protease activity and SARS-CoV-2 infection. Nature Communications, 2021, 12, 1726.	5.8	86
69	The Role of DC-SIGN and DC-SIGNR in HIV and SIV Attachment, Infection, and Transmission. Virology, 2001, 286, 1-6.	1.1	81
70	Simian immunodeficiency virus variants with differential T-cell and macrophage tropism use CCR5 and an unidentified cofactor expressed in CEMx174 cells for efficient entry. Journal of Virology, 1997, 71, 6509-6516.	1.5	80
71	Comparable neutralisation evasion of SARS-CoV-2 omicron subvariants BA.1, BA.2, and BA.3. Lancet Infectious Diseases, The, 2022, 22, 766-767.	4.6	79
72	Analysis of the Interaction of Ebola Virus Glycoprotein with DCâ€SIGN (Dendritic Cell–Specific) Tj ETQq0 0 Infectious Diseases, 2007, 196, S237-S246.	0 rgBT /Over 1.9	lock 10 Tf 50 78

#	Article	IF	CITATIONS
73	Polymorphisms in dipeptidyl peptidase 4 reduce host cell entry of Middle East respiratory syndrome coronavirus. Emerging Microbes and Infections, 2020, 9, 155-168.	3.0	77
74	SARS-CoV-2 mutations acquired in mink reduce antibody-mediated neutralization. Cell Reports, 2021, 35, 109017.	2.9	77
75	DESC1 and MSPL Activate Influenza A Viruses and Emerging Coronaviruses for Host Cell Entry. Journal of Virology, 2014, 88, 12087-12097.	1.5	76
76	B.1.617.2 enters and fuses lung cells with increased efficiency and evades antibodies induced by infection and vaccination. Cell Reports, 2021, 37, 109825.	2.9	73
77	Functional and Antigenic Characterization of Human, Rhesus Macaque, Pigtailed Macaque, and Murine DC-SIGN. Journal of Virology, 2001, 75, 10281-10289.	1.5	72
78	Different residues in the SARS-CoV spike protein determine cleavage and activation by the host cell protease TMPRSS2. PLoS ONE, 2017, 12, e0179177.	1.1	71
79	Priming Time: How Cellular Proteases Arm Coronavirus Spike Proteins. , 2018, , 71-98.		69
80	Prospects of HIV-1 entry inhibitors as novel therapeutics. Reviews in Medical Virology, 2004, 14, 255-270.	3.9	68
81	Molecular mechanism of inhibiting the SARS-CoV-2 cell entry facilitator TMPRSS2 with camostat and nafamostat. Chemical Science, 2021, 12, 983-992.	3.7	66
82	DC-SIGN Interactions with Human Immunodeficiency Virus: Virus Binding and Transfer Are Dissociable Functions. Journal of Virology, 2001, 75, 10523-10526.	1.5	64
83	The Ebola Virus Glycoprotein and HIV-1 Vpu Employ Different Strategies to Counteract the Antiviral Factor Tetherin. Journal of Infectious Diseases, 2011, 204, S850-S860.	1.9	64
84	Comparative Analysis of Ebola Virus Glycoprotein Interactions With Human and Bat Cells. Journal of Infectious Diseases, 2011, 204, S840-S849.	1.9	64
85	Inhibition of acid sphingomyelinase by ambroxol prevents SARS-CoV-2 entry into epithelial cells. Journal of Biological Chemistry, 2021, 296, 100701.	1.6	63
86	Interactions of LSECtin and DC-SIGN/DC-SIGNR with viral ligands: Differential pH dependence, internalization and virion binding. Virology, 2008, 373, 189-201.	1.1	62
87	Interferon-Induced Transmembrane Protein–Mediated Inhibition of Host Cell Entry of Ebolaviruses. Journal of Infectious Diseases, 2015, 212, S210-S218.	1.9	58
88	The role of DC-SIGN and DC-SIGNR in HIV and Ebola virus infection: can potential therapeutics block virus transmission and dissemination?. Expert Opinion on Therapeutic Targets, 2002, 6, 423-431.	1.5	55
89	Platelet activation suppresses HIV-1 infection of T cells. Retrovirology, 2013, 10, 48.	0.9	55
90	Compact, Polyvalent Mannose Quantum Dots as Sensitive, Ratiometric FRET Probes for Multivalent Protein–Ligand Interactions. Angewandte Chemie - International Edition, 2016, 55, 4738-4742.	7.2	55

#	Article	IF	CITATIONS
91	pH Optimum of Hemagglutinin-Mediated Membrane Fusion Determines Sensitivity of Influenza A Viruses to the Interferon-Induced Antiviral State and IFITMs. Journal of Virology, 2017, 91, .	1.5	54
92	Dissecting Multivalent Lectin–Carbohydrate Recognition Using Polyvalent Multifunctional Glycan-Quantum Dots. Journal of the American Chemical Society, 2017, 139, 11833-11844.	6.6	54
93	A novel class of TMPRSS2 inhibitors potently block SARS-CoV-2 and MERS-CoV viral entry and protect human epithelial lung cells. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	54
94	Peptide-Based Inhibitors of the HIV Envelope Protein and Other Class I Viral Fusion Proteins. Current Pharmaceutical Design, 2010, 16, 1143-1158.	0.9	52
95	The Signal Peptide of the Ebolavirus Glycoprotein Influences Interaction with the Cellular Lectins DC-SIGN and DC-SIGNR. Journal of Virology, 2006, 80, 6305-6317.	1.5	51
96	Influenza A Virus Encoding Secreted Gaussia Luciferase as Useful Tool to Analyze Viral Replication and Its Inhibition by Antiviral Compounds and Cellular Proteins. PLoS ONE, 2014, 9, e97695.	1.1	50
97	The Role of Phlebovirus Glycoproteins in Viral Entry, Assembly and Release. Viruses, 2016, 8, 202.	1.5	50
98	Glycan-Gold Nanoparticles as Multifunctional Probes for Multivalent Lectin–Carbohydrate Binding: Implications for Blocking Virus Infection and Nanoparticle Assembly. Journal of the American Chemical Society, 2020, 142, 18022-18034.	6.6	49
99	Analysis of Ebola Virus Entry Into Macrophages. Journal of Infectious Diseases, 2015, 212, S247-S257.	1.9	47
100	TMPRSS11A activates the influenza A virus hemagglutinin and the MERS coronavirus spike protein and is insensitive against blockade by HAI-1. Journal of Biological Chemistry, 2018, 293, 13863-13873.	1.6	47
101	Coâ€receptor Usage of BOB/GPR15 in Addition to CCR5 Has No Significant Effect on Replication of Simian Immunodeficiency Virus In Vivo. Journal of Infectious Diseases, 1999, 180, 1494-1502.	1.9	46
102	Lack of MERS Coronavirus Neutralizing Antibodies in Humans, Eastern Province, Saudi Arabia. Emerging Infectious Diseases, 2013, 19, 2034-2036.	2.0	44
103	Functional comparison of mouse CIRE/mouse DC-SIGN and human DC-SIGN. International Immunology, 2006, 18, 741-753.	1.8	43
104	Delta variant (B.1.617.2) sublineages do not show increased neutralization resistance. Cellular and Molecular Immunology, 2021, 18, 2557-2559.	4.8	41
105	The Proteolytic Activation of (H3N2) Influenza A Virus Hemagglutinin Is Facilitated by Different Type II Transmembrane Serine Proteases. Journal of Virology, 2016, 90, 4298-4307.	1.5	40
106	The glycoprotein of vesicular stomatitis virus promotes release of virus-like particles from tetherin-positive cells. PLoS ONE, 2017, 12, e0189073.	1.1	40
107	Camostat Mesylate May Reduce Severity of Coronavirus Disease 2019 Sepsis: A First Observation. , 2020, 2, e0284.		39
108	SARS-CoV-2 Omicron sublineages show comparable cell entry but differential neutralization by therapeutic antibodies. Cell Host and Microbe, 2022, 30, 1103-1111.e6.	5.1	38

#	Article	IF	CITATIONS
109	Hemofiltrate CC Chemokine 1[9-74] Causes Effective Internalization of CCR5 and Is a Potent Inhibitor of R5-Tropic Human Immunodeficiency Virus Type 1 Strains in Primary T Cells and Macrophages. Antimicrobial Agents and Chemotherapy, 2002, 46, 982-990.	1.4	37
110	TMPRSS2 Isoform 1 Activates Respiratory Viruses and Is Expressed in Viral Target Cells. PLoS ONE, 2015, 10, e0138380.	1.1	36
111	Modulation of HIV-1 Gag/Gag-Pol frameshifting by tRNA abundance. Nucleic Acids Research, 2019, 47, 5210-5222.	6.5	35
112	Neutralization of the SARS-CoV-2 Delta variant after heterologous and homologous BNT162b2 or ChAdOx1 nCoV-19 vaccination. Cellular and Molecular Immunology, 2021, 18, 2455-2456.	4.8	35
113	Small-Molecule Thioesters as SARS-CoV-2 Main Protease Inhibitors: Enzyme Inhibition, Structure–Activity Relationships, Antiviral Activity, and X-ray Structure Determination. Journal of Medicinal Chemistry, 2022, 65, 9376-9395.	2.9	35
114	Incorporation of podoplanin into HIV released from HEK-293T cells, but not PBMC, is required for efficient binding to the attachment factor CLEC-2. Retrovirology, 2010, 7, 47.	0.9	34
115	Host Cell Factors in Filovirus Entry: Novel Players, New Insights. Viruses, 2012, 4, 3336-3362.	1.5	34
116	Inhibition of Proprotein Convertases Abrogates Processing of the Middle Eastern Respiratory Syndrome Coronavirus Spike Protein in Infected Cells but Does Not Reduce Viral Infectivity. Journal of Infectious Diseases, 2015, 211, 889-897.	1.9	34
117	Sphingosine prevents binding of SARS–CoV-2 spike to its cellular receptor ACE2. Journal of Biological Chemistry, 2020, 295, 15174-15182.	1.6	34
118	A Polymorphism within the Internal Fusion Loop of the Ebola Virus Glycoprotein Modulates Host Cell Entry. Journal of Virology, 2017, 91, .	1.5	33
119	Novel SARS-CoV-2 receptors: ASGR1 and KREMEN1. Cell Research, 2022, 32, 1-2.	5.7	33
120	Hemagglutinin Cleavability, Acid Stability, and Temperature Dependence Optimize Influenza B Virus for Replication in Human Airways. Journal of Virology, 2019, 94, .	1.5	32
121	Tetherin Sensitivity of Influenza A Viruses Is Strain Specific: Role of Hemagglutinin and Neuraminidase. Journal of Virology, 2015, 89, 9178-9188.	1.5	31
122	Amino Acid 324 in the Simian Immunodeficiency Virus SIVmac V3 Loop Can Confer CD4 Independence and Modulate the Interaction with CCR5 and Alternative Coreceptors. Journal of Virology, 2004, 78, 3223-3232.	1.5	30
123	CD4- and dynamin-dependent endocytosis of HIV-1 into plasmacytoid dendritic cells. Virology, 2012, 423, 152-164.	1.1	30
124	The Glycoproteins of All Filovirus Species Use the Same Host Factors for Entry into Bat and Human Cells but Entry Efficiency Is Species Dependent. PLoS ONE, 2016, 11, e0149651.	1.1	30
125	Humoral and Cellular Immune Responses Against Severe Acute Respiratory Syndrome Coronavirus 2 Variants and Human Coronaviruses After Single BNT162b2 Vaccination. Clinical Infectious Diseases, 2021, 73, 2000-2008.	2.9	30
126	Rapid SARS-CoV-2 Adaptation to Available Cellular Proteases. Journal of Virology, 2022, 96, jvi0218621.	1.5	30

#	Article	IF	CITATIONS
127	The multiple facets of HIV attachment to dendritic cell lectins. Cellular Microbiology, 2010, 12, 1553-1561.	1.1	29
128	The MEK1/2-inhibitor ATR-002 efficiently blocks SARS-CoV-2 propagation and alleviates pro-inflammatory cytokine/chemokine responses. Cellular and Molecular Life Sciences, 2022, 79, 65.	2.4	29
129	Impact of polymorphisms in the DC-SIGNR neck domain on the interaction with pathogens. Virology, 2006, 347, 354-363.	1.1	28
130	Mouse LSECtin as a model for a human Ebola virus receptor. Glycobiology, 2011, 21, 806-812.	1.3	28
131	Influenza A Virus Does Not Encode a Tetherin Antagonist with Vpu-Like Activity and Induces IFN-Dependent Tetherin Expression in Infected Cells. PLoS ONE, 2012, 7, e43337.	1.1	28
132	Cellular Entry of HIV: Evaluation of Therapeutic Targets. Current Pharmaceutical Design, 2006, 12, 1963-1973.	0.9	27
133	A system for production of defective interfering particles in the absence of infectious influenza A virus. PLoS ONE, 2019, 14, e0212757.	1.1	27
134	Omicron: Master of immune evasion maintains robust ACE2 binding. Signal Transduction and Targeted Therapy, 2022, 7, 118.	7.1	27
135	How Ebola Virus Counters the Interferon System. Zoonoses and Public Health, 2012, 59, 116-131.	0.9	26
136	Tmprss2 knock-out mice are resistant to H10 influenza A virus pathogenesis. Journal of General Virology, 2019, 100, 1073-1078.	1.3	26
137	Evidence that Processing of the Severe Fever with Thrombocytopenia Syndrome Virus Gn/Gc Polyprotein Is Critical for Viral Infectivity and Requires an Internal Gc Signal Peptide. PLoS ONE, 2016, 11, e0166013.	1.1	26
138	Therapeutic Application of Alpha-1 Antitrypsin in COVID-19. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 224-227.	2.5	25
139	The spike protein of SARS-CoV-2 variant A.30 is heavily mutated and evades vaccine-induced antibodies with high efficiency. Cellular and Molecular Immunology, 2021, 18, 2673-2675.	4.8	25
140	Spike residue 403 affects binding of coronavirus spikes to human ACE2. Nature Communications, 2021, 12, 6855.	5.8	25
141	A pair of noncompeting neutralizing human monoclonal antibodies protecting from disease in a SARSâ€CoVâ€2 infection model. European Journal of Immunology, 2022, 52, 770-783.	1.6	24
142	SARS-CoV-2 delta variant neutralisation after heterologous ChAdOx1-S/BNT162b2 vaccination. Lancet, The, 2021, 398, 1041-1042.	6.3	24
143	The Hemagglutinin of Bat-Associated Influenza Viruses Is Activated by TMPRSS2 for pH-Dependent Entry into Bat but Not Human Cells. PLoS ONE, 2016, 11, e0152134.	1.1	23
144	Analysis of Determinants in Filovirus Glycoproteins Required for Tetherin Antagonism. Viruses, 2014, 6, 1654-1671.	1.5	22

#	Article	IF	CITATIONS
145	Mutation D614G increases SARS-CoV-2 transmission. Signal Transduction and Targeted Therapy, 2021, 6, 101.	7.1	22
146	Modulation of virion incorporation of Ebolavirus glycoprotein: Effects on attachment, cellular entry and neutralization. Virology, 2006, 352, 345-356.	1.1	21
147	Modulation of HIV and SIV neutralization sensitivity by DC-SIGN and mannose-binding lectin. Virology, 2007, 368, 322-330.	1.1	21
148	The role of the alternative coreceptor GPR15 in SIV tropism for human cells. Virology, 2012, 433, 73-84.	1.1	21
149	Cellular Entry of Retroviruses. Advances in Experimental Medicine and Biology, 2013, 790, 128-149.	0.8	21
150	The Tetherin Antagonism of the Ebola Virus Glycoprotein Requires an Intact Receptor-Binding Domain and Can Be Blocked by GP1-Specific Antibodies. Journal of Virology, 2016, 90, 11075-11086.	1.5	21
151	Interferonâ€Induced Transmembrane Proteins Mediate Viral Evasion in Acute and Chronic Hepatitis C Virus Infection. Hepatology, 2019, 70, 1506-1520.	3.6	21
152	How SARS-CoV-2 makes the cut. Nature Microbiology, 2021, 6, 828-829.	5.9	21
153	Interaction Between the Spike Protein of Human Coronavirus NL63 and its Cellular Receptor ACE2. Advances in Experimental Medicine and Biology, 2006, 581, 281-284.	0.8	21
154	Analysis of IFITM-IFITM Interactions by a Flow Cytometry-Based FRET Assay. International Journal of Molecular Sciences, 2019, 20, 3859.	1.8	20
155	Evidence that multiple defects in murine DC-SIGN inhibit a functional interaction with pathogens. Virology, 2006, 345, 482-491.	1.1	19
156	Evaluation of Current Approaches to Inhibit HIV Entry. Current Drug Targets Infectious Disorders, 2002, 2, 9-16.	2.1	18
157	Tetherin Inhibits Nipah Virus but Not Ebola Virus Replication in Fruit Bat Cells. Journal of Virology, 2019, 93, .	1.5	18
158	Cell culture-based production and in vivo characterization of purely clonal defective interfering influenza virus particles. BMC Biology, 2021, 19, 91.	1.7	18
159	Mutations in the C3 region of human and simian immunodeficiency virus envelope have differential effects on viral infectivity, replication, and CD4-dependency. Virology, 2003, 315, 292-302.	1.1	17
160	Evidence for an ACE2-Independent Entry Pathway That Can Protect from Neutralization by an Antibody Used for COVID-19 Therapy. MBio, 2022, 13, e0036422.	1.8	17
161	Compact, Polyvalent Mannose Quantum Dots as Sensitive, Ratiometric FRET Probes for Multivalent Protein-Ligand Interactions. Angewandte Chemie, 2016, 128, 4816-4820.	1.6	16
162	The Upper Respiratory Tract of Felids Is Highly Susceptible to SARS-CoV-2 Infection. International Journal of Molecular Sciences, 2021, 22, 10636.	1.8	16

#	Article	IF	CITATIONS
163	Non-human primate orthologues of TMPRSS2 cleave and activate the influenza virus hemagglutinin. PLoS ONE, 2017, 12, e0176597.	1.1	16
164	Activation of Sphingomyelinase-Ceramide-Pathway in COVID-19 Purposes Its Inhibition for Therapeutic Strategies. Frontiers in Immunology, 2021, 12, 784989.	2.2	15
165	Calu-3â€ ⁻ cells are largely resistant to entry driven by filovirus glycoproteins and the entry defect can be rescued by directed expression of DC-SIGN or cathepsin L. Virology, 2019, 532, 22-29.	1.1	13
166	Release of Immunomodulatory Ebola Virus Glycoprotein-Containing Microvesicles Is Suppressed by Tetherin in a Species-Specific Manner. Cell Reports, 2019, 26, 1841-1853.e6.	2.9	13
167	H2 influenza A virus is not pathogenic in Tmprss2 knock-out mice. Virology Journal, 2020, 17, 56.	1.4	13
168	Basic Amino Acid Residues in the V3 Loop of Simian Immunodeficiency Virus Envelope Alter Viral Coreceptor Tropism and Infectivity but Do Not Allow Efficient Utilization of CXCR4 as Entry Cofactor. Virology, 2001, 284, 287-296.	1.1	12
169	A GXXXA Motif in the Transmembrane Domain of the Ebola Virus Glycoprotein Is Required for Tetherin Antagonism. Journal of Virology, 2018, 92, .	1.5	12
170	Toll-Like Receptor 3 Signalling Up-Regulates Expression of the HIV Co-Receptor G-Protein Coupled Receptor 15 on Human CD4+ T Cells. PLoS ONE, 2014, 9, e88195.	1.1	11
171	Comparative Analysis of Host Cell Entry of Ebola Virus From Sierra Leone, 2014, and Zaire, 1976. Journal of Infectious Diseases, 2015, 212, S172-S180.	1.9	11
172	Natural cystatin C fragments inhibit GPR15-mediated HIV and SIV infection without interfering with GPR15L signaling. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	11
173	Synergistic inhibition of SARS-CoV-2 cell entry by otamixaban and covalent protease inhibitors: pre-clinical assessment of pharmacological and molecular properties. Chemical Science, 2021, 12, 12600-12609.	3.7	11
174	Urinary Levels of SARS-CoV-2 Nucleocapsid Protein Associate With Risk of AKI and COVID-19 Severity: A Single-Center Observational Study. Frontiers in Medicine, 2021, 8, 644715.	1.2	11
175	Functional comparison of MERS-coronavirus lineages reveals increased replicative fitness of the recombinant lineage 5. Nature Communications, 2021, 12, 5324.	5.8	11
176	Improved cellular and humoral immunity upon a second BNT162b2 and mRNA-1273 boost in prime-boost vaccination no/low responders with end-stage renal disease. Kidney International, 2021, 100, 1335-1337.	2.6	11
177	Alternatives to animal models and their application in the discovery of species susceptibility to SARS-CoV-2 and other respiratory infectious pathogens: A review. Veterinary Pathology, 2022, , 030098582110736.	0.8	11
178	Erythrocytes increase endogenous sphingosine 1-phosphate levels as an adaptive response to SARS-CoV-2 infection. Clinical Science, 2021, 135, 2781-2791.	1.8	11
179	Augmented neutralization of SARSâ€CoVâ€2 Omicron variant by boost vaccination and monoclonal antibodies. European Journal of Immunology, 2022, 52, 970-977.	1.6	10
180	Investigations on SARS-CoV-2 Susceptibility of Domestic and Wild Animals Using Primary Cell Culture Models Derived from the Upper and Lower Respiratory Tract. Viruses, 2022, 14, 828.	1.5	10

#	Article	IF	CITATIONS
181	Virion Background and Efficiency of Virion Incorporation Determine Susceptibility of Simian Immunodeficiency Virus Env-Driven Viral Entry to Inhibition by IFITM Proteins. Journal of Virology, 2017, 91, .	1.5	9
182	Spike proteins of novel MERS-coronavirus isolates from North- and West-African dromedary camels mediate robust viral entry into human target cells. Virology, 2019, 535, 261-265.	1.1	9
183	Neutralizing antibody responses 300 days after SARSâ€CoVâ€2 infection and induction of high antibody titers after vaccination. European Journal of Immunology, 2022, 52, 810-815.	1.6	9
184	Exploring antiviral and anti-inflammatory effects of thiol drugs in COVID-19. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2022, 323, L372-L389.	1.3	9
185	Differential regulation of human immunodeficiency virus type 2 and simian immunodeficiency virus promoter activity. Virology, 2004, 324, 501-509.	1.1	8
186	DC-SIGN: Access Portal for Sweet Viral Killers. Cell Host and Microbe, 2011, 10, 5-7.	5.1	8
187	Cell Entry of Influenza A Viruses: Sweet Talk between HA and CaV1.2. Cell Host and Microbe, 2018, 23, 697-699.	5.1	8
188	Dalbavancin: novel candidate for COVID-19 treatment. Cell Research, 2021, 31, 243-244.	5.7	8
189	Attachment Factor and Receptor Engagement of Sars Coronavirus and Human Coronavirus NL63. Advances in Experimental Medicine and Biology, 2006, 581, 219-227.	0.8	8
190	MCMV-based vaccine vectors expressing full-length viral proteins provide long-term humoral immune protection upon a single-shot vaccination. Cellular and Molecular Immunology, 2022, 19, 234-244.	4.8	8
191	Functional analysis of polymorphisms at the S1/S2 site of SARS-CoV-2 spike protein. PLoS ONE, 2022, 17, e0265453.	1.1	8
192	Characterization of the Filovirus-Resistant Cell Line SH-SY5Y Reveals Redundant Role of Cell Surface Entry Factors. Viruses, 2019, 11, 275.	1.5	7
193	Ex vivo assay to evaluate the efficacy of drugs targeting sphingolipids in preventing SARS-CoV-2 infection of nasal epithelial cells. STAR Protocols, 2021, 2, 100356.	0.5	7
194	Rhesus macaque IFITM3 gene polymorphisms and SIV infection. PLoS ONE, 2017, 12, e0172847.	1.1	7
195	Seroprevalence of viral infections in captive rhesus and cynomolgus macaques. Primate Biology, 2019, 6, 1-6.	0.6	7
196	Evidence that two instead of one defective interfering RNA in influenza A virus-derived defective interfering particles (DIPs) does not enhance antiviral activity. Scientific Reports, 2021, 11, 20477.	1.6	7
197	No evidence for increased cell entry or antibody evasion by Delta sublineage AY.4.2. Cellular and Molecular Immunology, 2022, 19, 449-452.	4.8	7
198	Calcium-modulating cyclophilin ligand does not restrict retrovirus release. Nature Medicine, 2010, 16, 155-156.	15.2	6

#	Article	IF	CITATIONS
199	The sphingosine kinase 1 activator, K6PC-5, attenuates Ebola virus infection. IScience, 2021, 24, 102266.	1.9	6
200	Peptidomimetic inhibitors of TMPRSS2 block SARS-CoV-2 infection in cell culture. Communications Biology, 2022, 5, .	2.0	6
201	Exclusive Decoration of Simian Immunodeficiency Virus Env with High-Mannose Type N-Glycans Is Not Compatible with Mucosal Transmission in Rhesus Macaques. Journal of Virology, 2015, 89, 11727-11733.	1.5	5
202	Inhibitors of signal peptide peptidase and subtilisin/kexin-isozyme 1 inhibit Ebola virus glycoprotein-driven cell entry by interfering with activity and cellular localization of endosomal cathepsins. PLoS ONE, 2019, 14, e0214968.	1.1	5
203	A Fosmid-Based System for the Generation of Recombinant Cercopithecine Alphaherpesvirus 2 Encoding Reporter Genes. Viruses, 2019, 11, 1026.	1.5	5
204	SARS-CoV-2 variants C.1.2 and B.1.621 (Mu) partially evade neutralization by antibodies elicited upon infection or vaccination. Cell Reports, 2022, 39, 110754.	2.9	5
205	Disease Manifestation and Viral Sequences in a Bonobo More Than 30 Years after Papillomavirus Infection. Pathogens, 2019, 8, 13.	1.2	4
206	Attachment of human immunodeficiency virus to cells and its inhibition. , 2007, , 31-47.		4
207	Detection systems for antibody responses against herpes B virus. Primate Biology, 2017, 4, 9-16.	0.6	4
208	A simian immunodeficiency virus V3 loop mutant that does not efficiently use CCR5 or common alternative coreceptors is moderately attenuated in vivo. Virology, 2007, 360, 275-285.	1.1	3
209	Novel Virus Related to Kaposi's Sarcoma–Associated Herpesvirus from Colobus Monkey. Emerging Infectious Diseases, 2019, 25, 1548-1551.	2.0	3
210	Analysis of Resistance of Ebola Virus Glycoprotein-Driven Entry Against MDL28170, An Inhibitor of Cysteine Cathepsins. Pathogens, 2019, 8, 192.	1.2	3
211	Cellular Entry of the SARS Coronavirus: Implications for Transmission, Pathogenicity and Antiviral Strategies. , 2010, , 3-22.		3
212	Understanding Omicron: Transmissibility, immune evasion and antiviral intervention. Clinical and Translational Medicine, 2022, 12, e839.	1.7	3
213	Mutagenic Analysis of the HIV Restriction Factor Shiftless. Viruses, 2022, 14, 1454.	1.5	3
214	Nafamostat-Mediated Inhibition of SARS-CoV-2 Ribosomal Frameshifting Is Insufficient to Impair Viral Replication in Vero Cells. Comment on Munshi et al. Identifying Inhibitors of â^1 Programmed Ribosomal Frameshifting in a Broad Spectrum of Coronaviruses. Viruses 2022, 14, 177. Viruses, 2022, 14, 1526.	1.5	3
215	Herpes B virus replication and viral lesions in the liver of a cynomolgus macaque which died from severe disease with rapid onset. Journal of Medical Primatology, 2017, 46, 256-259.	0.3	2
216	Carbohydrates on HIV: mediators of immune evasion and targets for antiviral intervention. Future HIV Therapy, 2008, 2, 253-257.	0.5	1

#	Article	IF	CITATIONS
217	Lectin-like interactions in virus–cell recognition. , 2010, , 567-584.		1
218	Kaposi Sarcoma in Mantled Guereza. Emerging Infectious Diseases, 2019, 25, 1552-1555.	2.0	1
219	Role of rhesus macaque IFITM3(2) in simian immunodeficiency virus infection of macaques. PLoS ONE, 2019, 14, e0224082.	1.1	1
220	Attachment/Binding. , 2013, , 1-10.		0
221	Attachment/Binding. , 2018, , 137-145.		0
222	A Recombinant System and Reporter Viruses for Papiine Alphaherpesvirus 2. Viruses, 2022, 14, 91.	1.5	0
223	Efficient antibody evasion but reduced ACE2 binding by the emerging SARS-CoV-2 variant B.1.640.2. , 2022, , .		0