
Francois Colas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5200449/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Average circulation, seasonal cycle, and mesoscale dynamics of the Peru Current System: A modeling approach. Journal of Geophysical Research, 2005, 110, .	3.3	264
2	Procedures for offline grid nesting in regional ocean models. Ocean Modelling, 2010, 35, 1-15.	2.4	189
3	Heat balance and eddies in the Peru-Chile current system. Climate Dynamics, 2012, 39, 509-529.	3.8	134
4	Eddy properties in the California Current System. Journal of Geophysical Research, 2011, 116, .	3.3	117
5	Cold filamentary intensification and oceanic surface convergence lines. Geophysical Research Letters, 2009, 36, .	4.0	112
6	On the pathways of the equatorial subsurface currents in the eastern equatorial Pacific and their contributions to the Peruâ€Chile Undercurrent. Journal of Geophysical Research, 2010, 115, .	3.3	100
7	Are there inescapable issues prohibiting the use of terrain-following coordinates in climate models?. Ocean Modelling, 2012, 42, 57-79.	2.4	97
8	Broad impacts of fine-scale dynamics on seascape structure from zooplankton to seabirds. Nature Communications, 2014, 5, 5239.	12.8	87
9	1997–1998 El Niño off Peru: A numerical study. Progress in Oceanography, 2008, 79, 138-155.	3.2	85
10	Seasonal variability of the Canary Current: A numerical study. Journal of Geophysical Research, 2011, 116, .	3.3	75
11	Impacts of <scp>E</scp> I <scp>N</scp> iño events on the <scp>P</scp> eruvian upwelling system productivity. Journal of Geophysical Research: Oceans, 2017, 122, 5423-5444.	2.6	65
12	Partial decoupling of primary productivity from upwelling in the California Current system. Nature Geoscience, 2016, 9, 505-508.	12.9	64
13	Eddies in eastern boundary subtropical upwelling systems. Geophysical Monograph Series, 2008, , 131-147.	0.1	61
14	An Index to Distinguish Surface- and Subsurface-Intensified Vortices from Surface Observations. Journal of Physical Oceanography, 2016, 46, 2529-2552.	1.7	61
15	An individual-based model study of anchovy early life history in the northern Humboldt Current system. Progress in Oceanography, 2008, 79, 313-325.	3.2	57
16	<scp>P</scp> eruâ€ <scp>C</scp> hile upwelling dynamics under climate change. Journal of Geophysical Research: Oceans, 2015, 120, 1152-1172.	2.6	52
17	Do submesoscale frontal processes ventilate the oxygen minimum zone off Peru?. Geophysical Research Letters, 2016, 43, 8133-8142.	4.0	52
18	Mesoscale Eddy Buoyancy Flux and Eddy-Induced Circulation in Eastern Boundary Currents. Journal of Physical Oceanography, 2013, 43, 1073-1095.	1.7	51

FRANCOIS COLAS

#	Article	IF	CITATIONS
19	Forcings and Evolution of the 2017 Coastal El Niño Off Northern Peru and Ecuador. Frontiers in Marine Science, 2018, 5, .	2.5	41
20	Distribution of Pleuroncodes monodon larvae over the continental shelf of south-central Chile: Field and modeling evidence for partial local retention and transport. Progress in Oceanography, 2012, 92-95, 206-227.	3.2	39
21	Small pelagic fish reproductive strategies in upwelling systems: A natal homing evolutionary model to study environmental constraints. Progress in Oceanography, 2009, 83, 261-269.	3.2	38
22	Disentangling the Mesoscale Oceanâ€Atmosphere Interactions. Journal of Geophysical Research: Oceans, 2019, 124, 2164-2178.	2.6	37
23	Equatorially forced intraseasonal propagations along the Peruâ€Chile coast and their relation with the nearshore eddy activity in 1992–2000: A modeling study. Journal of Geophysical Research, 2012, 117, .	3.3	36
24	Subsurface connections in the eastern tropical Pacific during La Niña 1999–2001 and El Niño 2002–2003. Journal of Geophysical Research, 2011, 116, .	3.3	35
25	Oxygen Variability During ENSO in the Tropical South Eastern Pacific. Frontiers in Marine Science, 2019, 5, .	2.5	35
26	What shapes mesoscale wind anomalies in coastal upwelling zones?. Climate Dynamics, 2011, 36, 2037-2049.	3.8	34
27	Mesoscale variability in the northeastern tropical Pacific: Forcing mechanisms and eddy properties. Journal of Geophysical Research, 2012, 117, .	3.3	33
28	Sensitivity of the Northern Humboldt Current System nearshore modeled circulation to initial and boundary conditions. Journal of Geophysical Research, 2011, 116, .	3.3	31
29	Ichthyoplankton transport from the African coast to the Canary Islands. Journal of Marine Systems, 2011, 87, 109-122.	2.1	31
30	Mesoscale SST–wind stress coupling in the Peru–Chile current system: Which mechanisms drive its seasonal variability?. Climate Dynamics, 2016, 47, 2309-2330.	3.8	31
31	Physical and biogeochemical impacts of RCP8.5 scenario in the Peru upwelling system. Biogeosciences, 2020, 17, 3317-3341.	3.3	29
32	A Lagrangian study tracing water parcel origins in the Canary Upwelling System. Scientia Marina, 2012, 76, 79-94.	0.6	26
33	Identifying appropriate spatial scales for marine conservation and management using a larval dispersal model: The case of Concholepas concholepas (loco) in Chile. Progress in Oceanography, 2014, 124, 42-53.	3.2	25
34	Impacts of the Mesoscale Oceanâ€Atmosphere Coupling on the Peruâ€Chile Ocean Dynamics: The Currentâ€Induced Wind Stress Modulation. Journal of Geophysical Research: Oceans, 2018, 123, 812-833.	2.6	22
35	Lagrangian circulation of the North Atlantic Central Water over the abyssal plain and continental slopes of the Bay of Biscay: description of selected mesoscale features. Scientia Marina, 2006, 70, 27-42.	0.6	22
36	Modeling transport and survival of anchoveta eggs and yolk–sac larvae in the coastal zone off central-southern Chile: Assessing spatial and temporal spawning parameters. Progress in Oceanography, 2012, 92-95, 178-191.	3.2	21

FRANCOIS COLAS

#	Article	IF	CITATIONS
37	Effects of seasonal variability in across- and alongshore transport of anchoveta (Engraulis ringens) larvae on model-based pre-recruitment indices off central Chile. Progress in Oceanography, 2012, 92-95, 192-205.	3.2	19
38	Impact of Ocean–Atmosphere Current Feedback on Ocean Mesoscale Activity: Regional Variations and Sensitivity to Model Resolution. Journal of Climate, 2020, 33, 2585-2602.	3.2	17
39	A data-assimilative ocean forecasting system for the Prince William sound and an evaluation of its performance during sound Predictions 2009. Continental Shelf Research, 2013, 63, S193-S208.	1.8	15
40	Striations and preferred eddy tracks triggered by topographic steering of the background flow in the eastern <scp>S</scp> outh <scp>P</scp> acific. Journal of Geophysical Research: Oceans, 2017, 122, 2847-2870.	2.6	15
41	Modeling tides and their influence on the circulation in Prince William Sound, Alaska. Continental Shelf Research, 2013, 63, S126-S137.	1.8	14
42	Spatial and seasonal patterns of fine-scale to mesoscale upper ocean dynamics in an Eastern Boundary Current System. Progress in Oceanography, 2016, 142, 105-116.	3.2	14
43	Marine heatwaves in the Humboldt current system: from 5-day localized warming to year-long El Niños. Scientific Reports, 2021, 11, 21172.	3.3	14
44	Lagrangian study of the Panama Bight and surrounding regions. Journal of Geophysical Research, 2006, 111, .	3.3	12
45	Influence of Biological Factors on Connectivity Patterns for Concholepas concholepas (loco) in Chile. PLoS ONE, 2016, 11, e0146418.	2.5	12
46	Mechanisms of the intensification of the upwelling-favorable winds during El Niño 1997–1998 in the Peruvian upwelling system. Climate Dynamics, 2018, 51, 3717-3733.	3.8	11
47	Modelling the seasonal dynamics of the Peru-Chile Undercurrent off Central Chile (30–40°S). Continental Shelf Research, 2016, 123, 61-79.	1.8	9
48	Untangling the roles of wind, run-off and tides in Prince William Sound. Continental Shelf Research, 2013, 63, S79-S89.	1.8	8
49	ENSO Climate Forcing of the Marine Mercury Cycle in the Peruvian Upwelling Zone Does Not Affect Methylmercury Levels of Marine Avian Top Predators. Environmental Science & Technology, 2021, 55, 15754-15765.	10.0	8
50	Larval supply of Peruvian scallop to the marine reserve of Lobos de Tierra Island: A modeling approach. Journal of Sea Research, 2019, 144, 142-155.	1.6	7
51	Projection of upwelling-favorable winds in the Peruvian upwelling system under the RCP8.5 scenario using a high-resolution regional model. Climate Dynamics, 2021, 57, 1-16.	3.8	7
52	Paralytic shellfish toxins in Peruvian scallops associated with blooms of Alexandrium ostenfeldii (Paulsen) Balech & Tangen in Paracas Bay, Peru. Marine Pollution Bulletin, 2021, 173, 112988.	5.0	7
53	Evidences and drivers of ocean deoxygenation off Peru over recent past decades. Scientific Reports, 2021, 11, 20292.	3.3	7
54	An Ocean Observing and Prediction Experiment in Prince William Sound, Alaska. Bulletin of the American Meteorological Society, 2011, 92, 997-1007.	3.3	5

#	Article	IF	CITATIONS
55	Impact of Chlorophyll Shading on the Peruvian Upwelling System. Geophysical Research Letters, 2021, 48, e2021GL094429.	4.0	5
56	Statistical identification of coastal hypoxia events controlled by wind-induced upwelling. Continental Shelf Research, 2022, 233, 104634.	1.8	2