Colin A Leech

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5200204/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intra-islet glucagon confers β-cell glucose competence for first-phase insulin secretion and favors GLP-1R stimulation by exogenous glucagon. Journal of Biological Chemistry, 2022, 298, 101484.	3.4	18
2	The alphaâ€7 nicotinic acetylcholine receptor agonist <scp>GTS</scp> â€21 engages the glucagonâ€like peptideâ€1 incretin hormone axis to lower levels of blood glucose in db/db mice. Diabetes, Obesity and Metabolism, 2022, 24, 1255-1266.	4.4	8
3	New Insights into Beta-Cell GLP-1 Receptor and cAMP Signaling. Journal of Molecular Biology, 2020, 432, 1347-1366.	4.2	40
4	Therapeutic potential of α7 nicotinic acetylcholine receptor agonists to combat obesity, diabetes, and inflammation. Reviews in Endocrine and Metabolic Disorders, 2020, 21, 431-447.	5.7	24
5	"A-kinase―regulator runs amok to provide a paradigm shift in cAMP signaling. Journal of Biological Chemistry, 2019, 294, 2247-2248.	3.4	4
6	Nonconventional glucagon and GLP-1 receptor agonist and antagonist interplay at the GLP-1 receptor revealed in high-throughput FRET assays for cAMP. Journal of Biological Chemistry, 2019, 294, 3514-3531.	3.4	24
7	Chimeric peptide EP45 as a dual agonist at GLP-1 and NPY2R receptors. Scientific Reports, 2018, 8, 3749.	3.3	35
8	Restoration of Glucose-Stimulated Cdc42-Pak1 Activation and Insulin Secretion by a Selective Epac Activator in Type 2 Diabetic Human Islets. Diabetes, 2018, 67, 1999-2011.	0.6	18
9	Interplay between ER Ca2+ Binding Proteins, STIM1 and STIM2, Is Required for Store-Operated Ca2+ Entry. International Journal of Molecular Sciences, 2018, 19, 1522.	4.1	11
10	$\hat{l}\pm 7$ Nicotinic Acetylcholine Receptor Regulates the Function and Viability of L Cells. Endocrinology, 2018, 159, 3132-3142.	2.8	11
11	Stromal Interaction Molecule 1 (STIM1) Regulates ATP-sensitive Potassium (KATP) and Store-operated Ca2+ Channels in MIN6 β-Cells. Journal of Biological Chemistry, 2017, 292, 2266-2277.	3.4	9
12	GPR119 Agonist AS1269574 Activates TRPA1 Cation Channels to Stimulate GLP-1 Secretion. Molecular Endocrinology, 2016, 30, 614-629.	3.7	20
13	IRS1 deficiency protects β-cells against ER stress-induced apoptosis by modulating sXBP-1 stability and protein translation. Scientific Reports, 2016, 6, 28177.	3.3	16
14	Synthetic small molecule GLP-1 secretagogues prepared by means of a three-component indole annulation strategy. Scientific Reports, 2016, 6, 28934.	3.3	18
15	Rp-cAMPS Prodrugs Reveal the cAMP Dependence of First-Phase Glucose-Stimulated Insulin Secretion. Molecular Endocrinology, 2015, 29, 988-1005.	3.7	32
16	Molecular Basis of cAMP Signaling in Pancreatic \hat{I}^2 Cells. , 2015, , 565-603.		2
17	Resveratrol Interferes with Fura-2 Intracellular Calcium Measurements. Journal of Fluorescence, 2014, 24, 279-284.	2.5	15
18	New insights concerning the molecular basis for defective glucoregulation in soluble adenylyl cyclase knockout mice. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 2593-2600.	3.8	15

COLIN A LEECH

#	Article	IF	CITATIONS
19	Molecular Basis of cAMP Signaling in Pancreatic Beta Cells. , 2014, , 1-36.		Ο
20	Molecular Basis of cAMP Signaling in Pancreatic Beta Cells. , 2014, , 1-35.		0
21	Synthesis, Characterization and Pharmacodynamics of Vitaminâ€B ₁₂ â€Conjugated Glucagonâ€Like Peptideâ€1. ChemMedChem, 2013, 8, 582-586.	3.2	28
22	Epac2A Makes a New Impact in \hat{I}^2 -Cell Biology. Diabetes, 2013, 62, 2665-2666.	0.6	11
23	Leptin-stimulated KATPchannel trafficking. Islets, 2013, 5, 229-232.	1.8	12
24	cAMP Sensor Epac and Gastrointestinal Function. , 2012, , 1849-1861.		1
25	Molecular physiology of glucagon-like peptide-1 insulin secretagogue action in pancreatic β cells. Progress in Biophysics and Molecular Biology, 2011, 107, 236-247.	2.9	95
26	Phospholipase C-ε links Epac2 activation to the potentiation of glucose-stimulated insulin secretion from mouse islets of Langerhans. Islets, 2011, 3, 121-128.	1.8	68
27	Epac2-dependent mobilization of intracellular Ca ²⁺ by glucagon-like peptide-1 receptor agonist exendin-4 is disrupted in β-cells of phospholipase C-É> knockout mice. Journal of Physiology, 2010, 588, 4871-4889.	2.9	61
28	PKA-dependent potentiation of glucose-stimulated insulin secretion by Epac activator 8-pCPT-2′- <i>O</i> -Me-cAMP-AM in human islets of Langerhans. American Journal of Physiology - Endocrinology and Metabolism, 2010, 298, E622-E633.	3.5	67
29	Facilitation of β-cell K _{ATP} channel sulfonylurea sensitivity by a cAMP analog selective for the cAMP-regulated guanine nucleotide exchange factor Epac. Islets, 2010, 2, 72-81.	1.8	43
30	Epac2-Dependent Rap1 Activation and the Control of Islet Insulin Secretion by Glucagon-Like Peptide-1. Vitamins and Hormones, 2010, 84, 279-302.	1.7	61
31	Enhanced Rap1 Activation and Insulin Secretagogue Properties of an Acetoxymethyl Ester of an Epac-selective Cyclic AMP Analog in Rat INS-1 Cells. Journal of Biological Chemistry, 2009, 284, 10728-10736.	3.4	56
32	Glucose-dependent potentiation of mouse islet insulin secretion by Epac activator 8-pCPT-2'-O-Me-cAMP-AM. Islets, 2009, 1, 260-265.	1.8	33
33	Role of the cAMP sensor Epac as a determinant of K _{ATP} channel ATP sensitivity in human pancreatic βâ€cells and rat INSâ€1 cells. Journal of Physiology, 2008, 586, 1307-1319.	2.9	86
34	<i>Synchronizing Ca</i> ^{<i>2</i>+} <i>and cAMP oscillations in pancreatic β-cells: a role for glucose metabolism and GLP-1 receptors?</i> Focus on "Regulation of cAMP dynamics by Ca ²⁺ and G protein-coupled receptors in the pancreatic β-cell: a computational approach― American Journal of Physiology - Cell Physiology, 2008, 294, C4-C6.	4.6	40
35	Expression of cAMP-Regulated Guanine Nucleotide Exchange Factors in Pancreatic Î ² -Cells. Biochemical and Biophysical Research Communications, 2000, 278, 44-47.	2.1	57
36	cAMP-dependent Mobilization of Intracellular Ca2+ Stores by Activation of Ryanodine Receptors in Pancreatic β-Cells. Journal of Biological Chemistry, 1999, 274, 14147-14156.	3.4	197

#	Article	IF	CITATIONS
37	Activation of a cAMP-regulated Ca2+-Signaling Pathway in Pancreatic β-Cells by the Insulinotropic Hormone Glucagon-like Peptide-1. Journal of Biological Chemistry, 1995, 270, 17749-17757.	3.4	157