List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5199760/publications.pdf Version: 2024-02-01

LONG HARKIM

#	Article	IF	CITATIONS
1	In-situ formation of asymmetric thin-film, mixed-matrix membranes with ZIF-8 in dual-functional imidazole-based comb copolymer for high-performance CO2 capture. Journal of Membrane Science, 2022, 642, 119913.	4.1	15
2	Adhesive, free-standing, partially fluorinated comb copolymer electrolyte films for solid flexible supercapacitors. Chemical Engineering Journal, 2022, 429, 132240.	6.6	13
3	Modification strategies of membranes with enhanced Anti-biofouling properties for wastewater Treatment: A review. Bioresource Technology, 2022, 345, 126501.	4.8	22
4	Highly CO-Selective Mixed-Matrix membranes incorporated with Ag Nanoparticle-Impregnated MIL-101 Metal–Organic frameworks. Chemical Engineering Journal, 2022, 435, 134803.	6.6	8
5	Submicron-thick, mixed-matrix membranes with metal-organic frameworks for CO2 separation: MIL-140C vs. UiO-67. Journal of Membrane Science, 2022, 659, 120788.	4.1	6
6	Direct growth of highly organized, 2D ultra-thin nano-accordion Ni-MOF@NiS2@C core-shell for high performance energy storage device. Chemical Engineering Journal, 2021, 406, 126810.	6.6	45
7	Solid-state facilitated transport membrane for CO/N2 separation based on PHMEP-co-PAA comb-like copolymer: Experimental and molecular simulation study. Journal of Membrane Science, 2021, 620, 118939.	4.1	9
8	Amphiphilic micelle-forming PDMS-PEGBEM comb copolymer self-assembly to tailor the interlamellar nanospaces of defective poly(ethylene oxide) membranes. Separation and Purification Technology, 2021, 257, 117892.	3.9	8
9	Synthesis, Characterization, and CO2/N2 Separation Performance of POEM-g-PAcAm Comb Copolymer Membranes. Polymers, 2021, 13, 177.	2.0	3
10	Substrate-independent three-dimensional polymer nanosheets induced by solution casting. Chemical Science, 2021, 12, 11748-11755.	3.7	1
11	Comparison of microstructure characterization methods by two-point correlation functions and reconstruction of 3D microstructures using 2D TEM images with high degree of phase clustering. Materials Characterization, 2021, 172, 110876.	1.9	11
12	Reconstruction of Three-Dimensional Microstructures of Two-Phase Membrane and Phase Property Estimation Through Combination of Experiment and Simulation. Multiscale Science and Engineering, 2021, 3, 109-118.	0.9	0
13	Dual-functional interconnected pebble-like structures in highly crystalline poly(ethylene oxide) membranes for CO2 separation. Separation and Purification Technology, 2021, 263, 118363.	3.9	6
14	One-dimensional SnO2 nanotube solid-state electrolyte for fast electron transport and high light harvesting in solar energy conversion. Solid State Ionics, 2021, 363, 115584.	1.3	4
15	Mille-feuille-like heterostructures through in situ cross-linking approach for high power density supercapacitor. Chemical Engineering Journal, 2021, 412, 128750.	6.6	6
16	Ultrathin, Highly Permeable Graphene Oxide/Zeolitic Imidazole Framework Polymeric Mixed-Matrix Composite Membranes: Engineering the CO ₂ -Philic Pathway. ACS Sustainable Chemistry and Engineering, 2021, 9, 11903-11915.	3.2	11
17	Recent Development in Vanadium Pentoxide and Carbon Hybrid Active Materials for Energy Storage Devices. Nanomaterials, 2021, 11, 3213.	1.9	22
18	High-performance solid-state bendable supercapacitors based on PEGBEM-g-PAEMA graft copolymer electrolyte. Chemical Engineering Journal, 2020, 384, 123308.	6.6	24

#	Article	IF	CITATIONS
19	Strategies for the deposition of LaFeO ₃ photocathodes: improving the photocurrent with a polymer template. Sustainable Energy and Fuels, 2020, 4, 884-894.	2.5	15
20	Mixed matrix membranes consisting of ZIF-8 in rubbery amphiphilic copolymer: Simultaneous improvement in permeability and selectivity. Chemical Engineering Research and Design, 2020, 153, 175-186.	2.7	11
21	Partially coated TiO2 on Al2O3 membrane for high water flux and photodegradation by novel filtration strategy in photocatalytic membrane reactors. Chemical Engineering Research and Design, 2020, 163, 138-148.	2.7	20
22	Phase Stiffness Estimation of Two-phase Pebax/PBE Membranes Using Reconstructed 3D Microstructures. Multiscale Science and Engineering, 2020, 2, 143-152.	0.9	1
23	In-situ growth of ZIF-8 in amphiphilic graft copolymer for mixed matrix membranes with simultaneous improvement of permeability and selectivity. Separation and Purification Technology, 2020, 253, 117514.	3.9	12
24	Harnessing SnO2 nanotube light scattering cluster to improve energy conversion efficiency assisted by high reflectance. Materials Chemistry and Physics, 2020, 254, 123538.	2.0	11
25	Bimodal-porous hollow MgO sphere embedded mixed matrix membranes for CO2 capture. Separation and Purification Technology, 2020, 250, 117065.	3.9	22
26	Removal of heavy metals by polysaccharide: a review. Polymer-Plastics Technology and Materials, 2020, 59, 1770-1790.	0.6	20
27	Imidazole-functionalized hydrophilic rubbery comb copolymers: Microphase-separation and good gas separation properties. Separation and Purification Technology, 2020, 242, 116780.	3.9	12
28	Highly Interconnected Nanorods and Nanosheets Based on a Hierarchically Layered Metal–Organic Framework for a Flexible, High-Performance Energy Storage Device. ACS Sustainable Chemistry and Engineering, 2020, 8, 3773-3785.	3.2	35
29	Preparation and characterization of bioinert amphiphilic P(VDF-co-CTFE)-g-POEM graft copolymer. Polymer-Plastics Technology and Materials, 2020, 59, 1077-1087.	0.6	2
30	Facile graft copolymer template synthesis of mesoporous polymeric metal-organic frameworks to produce mesoporous TiO2: Promising platforms for photovoltaic and photocatalytic applications. Journal of Industrial and Engineering Chemistry, 2020, 84, 384-392.	2.9	17
31	Dissolution–precipitation approach for long-term stable low-friction composites consisting of mesoporous TiO2 nanospheres and carbon black in Poly(Vinylidene fluoride) matrix. Tribology International, 2020, 145, 106187.	3.0	6
32	Use of non-selective, high-molecular-weight poly(ethylene oxide) membrane for CO2 separation by incorporation of comb copolymer. Journal of Membrane Science, 2020, 605, 118092.	4.1	16
33	Ultra-selective ferric ion-complexed membranes composed of water-based zwitterionic comb copolymers. Journal of Materials Chemistry A, 2019, 7, 20847-20853.	5.2	2
34	P (VDF―co TFE)―g â€₽2VP amphiphilic graft copolymers: Synthesis, structure, and permeation properties. Polymers for Advanced Technologies, 2019, 30, 2707-2720.	1.6	2
35	Bicontinuously crosslinked polymer electrolyte membranes with high ion conductivity and mechanical strength. Journal of Membrane Science, 2019, 589, 117250.	4.1	46
36	Order-to-Disorder Transition of Lamella-Forming PS- <i>b</i> P2VP Films Confined between the Preferential Surface and Neutral Substrate. Macromolecules, 2019, 52, 8672-8681.	2.2	9

#	Article	IF	CITATIONS
37	Surface Carbon Shell-Functionalized ZrO2 as Nanofiller in Polymer Gel Electrolyte-Based Dye-Sensitized Solar Cells. Nanomaterials, 2019, 9, 1418.	1.9	18
38	Solid-state facilitated transport of carbon monoxide through mixed matrix membranes. Journal of Membrane Science, 2019, 592, 117373.	4.1	13
39	Synthesis, structure and gas separation properties of ethanol-soluble, amphiphilic POM-PBHP comb copolymers. Polymer, 2019, 180, 121700.	1.8	5
40	Instability of Polystyrene Film and Thermal Behaviors Mediated by Unfavorable Silicon Oxide Interlayer. Macromolecules, 2019, 52, 7524-7530.	2.2	9
41	High-performance ultrathin mixed-matrix membranes based on an adhesive PGMA- <i>co</i> -POEM comb-like copolymer for CO ₂ capture. Journal of Materials Chemistry A, 2019, 7, 14723-14731.	5.2	43
42	Diethylene Glycol-Assisted Organized TiO2 Nanostructures for Photocatalytic Wastewater Treatment Ceramic Membranes. Water (Switzerland), 2019, 11, 750.	1.2	10
43	Critical role of elemental copper for enhancing conversion kinetics of sulphur cathodes in rechargeable magnesium batteries. Applied Surface Science, 2019, 484, 933-940.	3.1	22
44	Nanoporous Structures from PS- <i>b</i> -PMMA- <i>b</i> -P <i>t</i> BA Triblock Copolymer and Selective Modification for Ultrafiltration Membranes. ACS Applied Polymer Materials, 2019, 1, 584-592.	2.0	5
45	Cr-doped lithium titanate nanocrystals as Mg ion insertion materials for Mg batteries. Journal of Materials Chemistry A, 2019, 7, 25619-25627.	5.2	16
46	High tribology performance of Poly(vinylidene fluoride) composites based on three-dimensional mesoporous magnesium oxide nanosheets. Composites Part B: Engineering, 2019, 163, 224-235.	5.9	20
47	Hybrid membranes based on ionic-liquid-functionalized poly(vinyl benzene chloride) beads for CO2 capture. Journal of Membrane Science, 2019, 572, 365-373.	4.1	25
48	Semi-interpenetrating polymer network membranes based on a self-crosslinkable comb copolymer for CO2 capture. Chemical Engineering Journal, 2019, 360, 1468-1476.	6.6	40
49	Orientation of an Amphiphilic Copolymer to a Lamellar Structure on a Hydrophobic Surface and Implications for CO 2 Capture Membranes. Angewandte Chemie - International Edition, 2019, 58, 1143-1147.	7.2	19
50	Orientation of an Amphiphilic Copolymer to a Lamellar Structure on a Hydrophobic Surface and Implications for CO 2 Capture Membranes. Angewandte Chemie, 2019, 131, 1155-1159.	1.6	9
51	Core-shell nanostructured heteropoly acid-functionalized metal-organic frameworks: Bifunctional heterogeneous catalyst for efficient biodiesel production. Applied Catalysis B: Environmental, 2019, 242, 51-59.	10.8	115
52	lleâ€Lysâ€Valâ€alaâ€Val (IKVAV) peptide for neuronal tissue engineering. Polymers for Advanced Technologies, 2019, 30, 4-12.	1.6	35
53	Highly-permeable Mixed Matrix Membranes Based on SBS-g-POEM Copolymer, ZIF-8 and Ionic Liquid. Membrane Journal, 2019, 29, 44-50.	0.2	3
54	Polymer Electrolyte Membranes Consisting of PVA- <i>g</i> POEM Graft Copolymers for Supercapacitors. Membrane Journal, 2019, 29, 323-328.	0.2	0

#	Article	IF	CITATIONS
55	Facile preparation of <scp>C</scp> u(I) impregnated <scp>MIL</scp> â€101(<scp>C</scp> r) and its use in a mixed matrix membrane for olefin/paraffin separation. Journal of Applied Polymer Science, 2018, 135, 46545.	1.3	13
56	Strategic combination of Grignard reagents and allyl-functionalized ionic liquids as an advanced electrolyte for rechargeable magnesium batteries. Journal of Materials Chemistry A, 2018, 6, 3126-3133.	5.2	18
57	Covalent organic framework-derived microporous carbon nanoparticles coated with conducting polypyrrole as an electrochemical capacitor. Applied Surface Science, 2018, 439, 833-838.	3.1	53
58	Synthesis of PVA-g-POEM graft copolymers and their use in highly permeable thin film composite membranes. Chemical Engineering Journal, 2018, 346, 739-747.	6.6	30
59	Pt-decorated SnO2 nanotubes prepared directly on a conducting substrate and their application in solar energy conversion using a solid polymer electrolyte. Applied Surface Science, 2018, 450, 9-20.	3.1	6
60	Polymethacrylate-comb-copolymer electrolyte for solid-state energy storage devices. Materials and Design, 2018, 149, 25-33.	3.3	9
61	Boosting Visible Light Absorption of Metal-Oxide-Based Phototransistors via Heterogeneous In–Ga–Zn–O and CH ₃ NH ₃ Pbl ₃ Films. ACS Applied Materials & Interfaces, 2018, 10, 12854-12861.	4.0	45
62	Dual-phase all-polymeric membranes with graft copolymer filler for CO2 capture. Chemical Engineering Journal, 2018, 334, 939-947.	6.6	42
63	Effect of polymer template on structure and membrane fouling of TiO 2 /Al 2 O 3 composite membranes for wastewater treatment. Journal of Industrial and Engineering Chemistry, 2018, 57, 55-63.	2.9	20
64	Transition-metal-based layered double hydroxides tailored for energy conversion and storage. Journal of Materials Chemistry A, 2018, 6, 12-29.	5.2	170
65	Ultrafiltration membranes based on hybrids of an amphiphilic graft copolymer and titanium isopropoxide. Journal of Applied Polymer Science, 2018, 135, 45932.	1.3	5
66	Facilitated olefin transport through membranes consisting of partially polarized silver nanoparticles and PEMA-g-PPG graft copolymer. Journal of Membrane Science, 2018, 548, 149-156.	4.1	19
67	Efficient hematite photoanodes prepared by hydrochloric acid-treated solutions with amphiphilic graft copolymer. Journal of Power Sources, 2018, 404, 149-158.	4.0	9
68	Improvement in the CO ₂ Permeation Properties of High-Molecular-Weight Poly(ethylene) Tj ETQq0 0	0.rgBT /C	Verlock 10 24
69	Mixed-matrix membranes containing nanocage-like hollow ZIF-8 polyhedral nanocrystals in graft copolymers for carbon dioxide/methane separation. Separation and Purification Technology, 2018, 207, 427-434.	3.9	24
70	Highly catalytic and reflective dual-phase nickel sulfide electrodes for solar energy conversion. Applied Surface Science, 2018, 457, 1151-1157.	3.1	21
71	Synthesis of magnesium chloride complex electrolyte: Galvanic couple assisted catalytic dissolution of magnesium in ethereal solution. Journal of Power Sources, 2018, 398, 120-127.	4.0	6
72	Novel semi-alicyclic polyimide membranes: Synthesis, characterization, and gas separation properties. Polymer, 2018, 151, 325-333.	1.8	35

#	Article	IF	CITATIONS
73	Multifunctional Amine-Containing PVA- <i>g</i> -POEM Graft Copolymer Membranes for CO ₂ Capture. Macromolecules, 2018, 51, 5646-5655.	2.2	11
74	Block copolymer membranes with catecholic bolaamphiphile assemblies. Journal of Membrane Science, 2018, 566, 35-43.	4.1	3
75	Well-organized, mesoporous nanocrystalline TiO2 on alumina membranes with hierarchical architecture: Antifouling and photocatalytic activities. Catalysis Today, 2017, 282, 2-12.	2.2	34
76	Facilitated transport hollow fiber membrane prepared by t-Bu CoSalen for O 2 /N 2 separation. Microchemical Journal, 2017, 132, 36-42.	2.3	12
77	Solid polymer electrolyte dye-sensitized solar cells with organized mesoporous TiO2 interfacial layer templated by poly(vinyl alcohol)–poly(methyl methacrylate) comb copolymer. Solid State Ionics, 2017, 300, 195-204.	1.3	16
78	Resistive Switching Properties through Iodine Migrations of a Hybrid Perovskite Insulating Layer. Advanced Materials Interfaces, 2017, 4, 1601035.	1.9	75
79	Hybrid membranes of nanostructrual copolymer and ionic liquid for carbon dioxide capture. Chemical Engineering Journal, 2017, 322, 254-262.	6.6	33
80	High-performance thin PVC-POEM/ZIF-8 mixed matrix membranes on alumina supports for CO2/CH4 separation. Journal of Industrial and Engineering Chemistry, 2017, 53, 127-133.	2.9	21
81	1-Butyl-1-methylpyrrolidinium chloride as an effective corrosion inhibitor for stainless steel current collectors in magnesium chloride complex electrolytes. Journal of Power Sources, 2017, 355, 90-97.	4.0	35
82	Structural, thermal, and tribological properties of poly(vinylidene fluoride)/nano-TiO2 composites prepared by dry-mixing and hot-press technique. Macromolecular Research, 2017, 25, 365-373.	1.0	10
83	A facile graft polymerization approach to N-doped TiO 2 heterostructures with enhanced visible-light photocatalytic activity. Materials Letters, 2017, 202, 66-69.	1.3	21
84	Effect of Interfacial Blocking Layer Morphology on the Solar Peroxydisulfate Production of WO 3 Nanoflakes. Electrochimica Acta, 2017, 244, 184-191.	2.6	12
85	Insight into Charge Separation in WO ₃ /BiVO ₄ Heterojunction for Solar Water Splitting. ACS Applied Materials & Interfaces, 2017, 9, 19780-19790.	4.0	142
86	Failure criterion of silver nanowire electrodes on a polymer substrate for highly flexible devices. Scientific Reports, 2017, 7, 45903.	1.6	21
87	Mixed matrix membranes based on dual-functional MgO nanosheets for olefin/paraffin separation. Journal of Membrane Science, 2017, 533, 48-56.	4.1	39
88	Multifunctional nanocomposite hollow fiber membranes by solvent transfer induced phase separation. Nature Communications, 2017, 8, 1234.	5.8	94
89	Direct Organization of Morphology-Controllable Mesoporous SnO ₂ Using Amphiphilic Graft Copolymer for Gas-Sensing Applications. ACS Applied Materials & Interfaces, 2017, 9, 37246-37253.	4.0	24
90	Preparation of TiO2/Ag binary nanocomposite as high-activity visible-light-driven photocatalyst via graft polymerization. Chemical Physics Letters, 2017, 685, 119-126.	1.2	15

#	Article	IF	CITATIONS
91	Nanoscale Zirconium-Abundant Surface Layers on Lithium- and Manganese-Rich Layered Oxides for High-Rate Lithium-Ion Batteries. Nano Letters, 2017, 17, 7869-7877.	4.5	40
92	High-Performance Self-Cross-Linked PGP–POEM Comb Copolymer Membranes for CO ₂ Capture. Macromolecules, 2017, 50, 8938-8947.	2.2	28
93	SnO2 hollow nanotubes: a novel and efficient support matrix for enzyme immobilization. Scientific Reports, 2017, 7, 15333.	1.6	61
94	Achieving high capacity and rate capability in layered lithium transition metal oxide cathodes for lithium-ion batteries. Journal of Power Sources, 2017, 360, 575-584.	4.0	20
95	Direct growth of NiO nanosheets on mesoporous TiN film for energy storage devices. Applied Surface Science, 2017, 420, 849-857.	3.1	17
96	Room-temperature, one-pot process for CO2 capture membranes based on PEMA-g-PPG graft copolymer. Chemical Engineering Journal, 2017, 313, 1615-1622.	6.6	19
97	MgCO3-crystal-containing mixed matrix membranes with enhanced CO2 permselectivity. Chemical Engineering Journal, 2017, 307, 503-512.	6.6	22
98	Synthesis of organized mesoporous metal oxide films templated by amphiphilic PVA–PMMA comb copolymer. RSC Advances, 2016, 6, 67849-67857.	1.7	8
99	PEDOT-PSS embedded comb copolymer membranes with improved CO2 capture. Journal of Membrane Science, 2016, 518, 21-30.	4.1	20
100	Giant Gyroid and Templates from High-Molecular-Weight Block Copolymer Self-assembly. Scientific Reports, 2016, 6, 36326.	1.6	35
101	Maximized performance of dye solar cells on plastic: a combined theoretical and experimental optimization approach. Energy and Environmental Science, 2016, 9, 2061-2071.	15.6	19
102	A conditioning-free magnesium chloride complex electrolyte for rechargeable magnesium batteries. Journal of Materials Chemistry A, 2016, 4, 7160-7164.	5.2	78
103	Synthesis and application of PEGBEM-g-POEM graft copolymer electrolytes for dye-sensitized solar cells. Solid State Ionics, 2016, 290, 24-30.	1.3	15
104	Well-Organized Mesoporous TiO ₂ Photoanode by Using Amphiphilic Graft Copolymer for Efficient Perovskite Solar Cells. Journal of Physical Chemistry C, 2016, 120, 9619-9627.	1.5	43
105	An amphiphilic block–graft copolymer electrolyte: synthesis, nanostructure, and use in solid-state flexible supercapacitors. Journal of Materials Chemistry A, 2016, 4, 7848-7858.	5.2	27
106	Well-organized mesoporous TiO2 film with high porosity made using alcohol-assisted EC-g-PMMA graft copolymer. Macromolecular Research, 2016, 24, 573-576.	1.0	4
107	Energetic Al/Fe2O3/PVDF composites for high energy release: Importance of polymer binder and interface. Macromolecular Research, 2016, 24, 909-914.	1.0	11
108	Selective Ion Transporting Polymerized Ionic Liquid Membrane Separator for Enhancing Cycle Stability and Durability in Secondary Zinc–Air Battery Systems. ACS Applied Materials & Interfaces, 2016, 8, 26298-26308.	4.0	69

#	Article	IF	CITATIONS
109	Critical Role of pH Evolution of Electrolyte in the Reaction Mechanism for Rechargeable Zinc Batteries. ChemSusChem, 2016, 9, 2948-2956.	3.6	332
110	Scalable and bendable organized mesoporous TiN films templated by using a dual-functional amphiphilic graft copolymer for solid supercapacitors. Journal of Materials Chemistry A, 2016, 4, 12497-12503.	5.2	25
111	Bimodal porous TiO2 structures templated by graft copolymer/homopolymer blend for dye-sensitized solar cells with polymer electrolyte. Journal of Power Sources, 2016, 336, 286-297.	4.0	17
112	Hierarchical growth of TiO2 nanosheets on anodic ZnO nanowires for high efficiency dye-sensitized solar cells. Journal of Power Sources, 2016, 325, 365-374.	4.0	19
113	Structural color-tunable mesoporous bragg stack layers based on graft copolymer self-assembly for high-efficiency solid-state dye-sensitized solar cells. Journal of Power Sources, 2016, 324, 637-645.	4.0	13
114	CO2-philic PBEM-g-POEM comb copolymer membranes: Synthesis, characterization and CO2/N2 separation. Journal of Membrane Science, 2016, 502, 191-201.	4.1	46
115	Amphiphilic Graft Copolymer Nanospheres: From Colloidal Self-Assembly to CO ₂ Capture Membranes. ACS Applied Materials & Interfaces, 2016, 8, 9454-9461.	4.0	11
116	Spontaneously self-assembled dual-layer mixed matrix membranes containing mass-produced mesoporous TiO2 for CO2 capture. Journal of Membrane Science, 2016, 508, 62-72.	4.1	14
117	Preparation of porous carbons based on polyvinylidene fluoride for CO 2 adsorption: A combined experimental and computational study. Microporous and Mesoporous Materials, 2016, 219, 59-65.	2.2	28
118	Amphiphilic block-graft copolymer templates for organized mesoporous TiO2 films in dye-sensitized solar cells. Journal of Power Sources, 2016, 301, 18-28.	4.0	19
119	P25/PVC-g-POEM Mixed Matrix Membranes with Simultaneously Improved Permeability and Selectivity for COâ"/Nâ" Separation. Porrime, 2016, 40, 238.	0.0	0
120	High-performance Polymer Membranes with Multi-functional Amphiphilic Micelles for CO2Capture. ChemSusChem, 2015, 8, 3731-3731.	3.6	1
121	Interface-designed Membranes with Shape-controlled Patterns for High-performance Polymer Electrolyte Membrane Fuel Cells. Scientific Reports, 2015, 5, 16394.	1.6	50
122	Patternable PEDOT nanofilms with grid electrodes for transparent electrochromic devices targeting thermal camouflage. Nano Convergence, 2015, 2, 19.	6.3	28
123	Highâ€performance Polymer Membranes with Multiâ€functional Amphiphilic Micelles for CO ₂ Capture. ChemSusChem, 2015, 8, 3783-3792.	3.6	37
124	Synthesis of cross-linked amides and esters as thin film composite membrane materials yields permeable and selective material for water vapor/gas separation. Journal of Materials Chemistry A, 2015, 3, 7888-7899.	5.2	44
125	Enhanced Performance of Mixedâ€Matrix Membranes through a Graft Copolymerâ€Directed Interface and Interaction Tuning Approach. ChemSusChem, 2015, 8, 650-658.	3.6	70
126	Hollow ZIF-8 nanoparticles improve the permeability of mixed matrix membranes for CO2/CH4 gas separation. Journal of Membrane Science, 2015, 480, 11-19.	4.1	146

#	Article	IF	CITATIONS
127	Antibacterial behaviour of quaternized poly(vinyl chloride)-g-poly(4-vinyl pyridine) graft copolymers. Chinese Journal of Polymer Science (English Edition), 2015, 33, 265-274.	2.0	15
128	A highly selective PEGBEM-g-POEM comb copolymer membrane for CO2/N2 separation. Journal of Membrane Science, 2015, 492, 452-460.	4.1	46
129	A triple-layered, hierarchical 1D core–shell nanostructure with a plasmonic Ag octahedral core for use in solid-state dye-sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 17644-17651.	5.2	15
130	Facile, Nonhydrothermal, Mass-Producible Synthesis of Mesoporous TiO 2 Spheres for Dye-Sensitized Solar Cells. Electrochimica Acta, 2015, 173, 139-147.	2.6	21
131	Plasmonic, interior-decorated, one-dimensional hierarchical nanotubes for high-efficiency, solid-state, dye-sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 10439-10447.	5.2	13
132	Completely Transparent Conducting Oxide-Free and Flexible Dye-Sensitized Solar Cells Fabricated on Plastic Substrates. ACS Nano, 2015, 9, 3760-3771.	7.3	100
133	Well-Organized Meso-Macroporous TiO ₂ /SiO ₂ Film Derived from Amphiphilic Rubbery Comb Copolymer. ACS Applied Materials & Interfaces, 2015, 7, 7767-7775.	4.0	37
134	Worm-like mesoporous TiO2 thin films templated using comb copolymer for dye-sensitized solar cells with polymer electrolyte. Journal of Power Sources, 2015, 298, 14-22.	4.0	17
135	Mixed matrix membranes consisting of SEBS block copolymers and size-controlled ZIF-8 nanoparticles for CO2 capture. Journal of Membrane Science, 2015, 495, 479-488.	4.1	96
136	Synergistic strategies for the preparation of highly efficient dye-sensitized solar cells on plastic substrates: combination of chemical and physical sintering. RSC Advances, 2015, 5, 76795-76803.	1.7	7
137	A shape- and morphology-controlled metal organic framework template for high-efficiency solid-state dye-sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 21599-21608.	5.2	45
138	High performance electrocatalyst consisting of CoS nanoparticles on an organized mesoporous SnO2 film: its use as a counter electrode for Pt-free, dye-sensitized solar cells. Nanoscale, 2015, 7, 670-678.	2.8	55
139	Metal-free organic-dye-based flexible dye-sensitized solar textiles with panchromatic effect. Dyes and Pigments, 2015, 113, 378-389.	2.0	17
140	Solid-salt pressure-retarded osmosis with exothermic dissolution energy for sustainable electricity production. Membrane Water Treatment, 2015, 6, 113-126.	0.5	4
141	Nanopatterning: Meshâ€Shaped Nanopatterning of Pt Counter Electrodes for Dyeâ€Sensitized Solar Cells with Enhanced Light Harvesting (Adv. Energy Mater. 18/2014). Advanced Energy Materials, 2014, 4, .	10.2	1
142	Mesh‣haped Nanopatterning of Pt Counter Electrodes for Dye‣ensitized Solar Cells with Enhanced Light Harvesting. Advanced Energy Materials, 2014, 4, 1400414.	10.2	31
143	Enhanced Device Efficiency of Bilayered Inverted Organic Solar Cells Based on Photocurable P3HTs with a Lightâ€Harvesting ZnO Nanorod Array. Advanced Energy Materials, 2014, 4, 1301338.	10.2	38
144	Multifunctional Organized Mesoporous Tin Oxide Films Templated by Graft Copolymers for Dye-Sensitized Solar Cells. ChemSusChem, 2014, 7, 1767-1767.	3.6	0

#	Article	IF	CITATIONS
145	Bifunctional Mothâ€Eye Nanopatterned Dyeâ€Sensitized Solar Cells: Lightâ€Harvesting and Selfâ€Cleaning Effects. Advanced Energy Materials, 2014, 4, 1300632.	10.2	73
146	High Efficiency Solidâ€State Dyeâ€Sensitized Solar Cells Assembled with Hierarchical Anatase Pine Treeâ€like TiO ₂ Nanotubes. Advanced Functional Materials, 2014, 24, 379-386.	7.8	102
147	Dyeâ€Sensitized Solar Cells: High Efficiency Solidâ€State Dyeâ€Sensitized Solar Cells Assembled with Hierarchical Anatase Pine Treeâ€kike TiO ₂ Nanotubes (Adv. Funct. Mater. 3/2014). Advanced Functional Materials, 2014, 24, 270-270.	7.8	2
148	Hierarchical Double‧hell Nanostructures of TiO ₂ Nanosheets on SnO ₂ Hollow Spheres for Highâ€Efficiency, Solid‧tate, Dye‧ensitized Solar Cells. Advanced Functional Materials, 2014, 24, 5037-5044.	7.8	76
149	A facile preparation method of surface patterned polymer electrolyte membranes for fuel cell applications. Journal of Materials Chemistry A, 2014, 2, 8652-8659.	5.2	60
150	One-pot synthesis of hierarchical mesoporous SnO ₂ spheres using a graft copolymer: enhanced photovoltaic and photocatalytic performance. RSC Advances, 2014, 4, 31452-31461.	1.7	21
151	Multifunctional all-TiO ₂ Bragg stacks based on blocking layer-assisted spin coating. Journal of Materials Chemistry C, 2014, 2, 3260-3269.	2.7	10
152	Dual-functionalized mesoporous TiO ₂ hollow nanospheres for improved CO ₂ separation membranes. Chemical Communications, 2014, 50, 5717-5720.	2.2	35
153	One-Step Process for the Synthesis and Deposition of Anatase, Two-Dimensional, Disk-Shaped TiO ₂ for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 20842-20850.	4.0	37
154	Improved electron transfer and plasmonic effect in dye-sensitized solar cells with bi-functional Nb-doped TiO2/Ag ternary nanostructures. Nanoscale, 2014, 6, 2718-2729.	2.8	34
155	Properties and performances of polymer composite membranes correlated with monomer and polydopamine for flue gas dehydration by water vapor permeation. Chemical Engineering Journal, 2014, 258, 348-356.	6.6	51
156	Novel π-extended porphyrin derivatives for use in dye-sensitized solar cells. Journal of Porphyrins and Phthalocyanines, 2014, 18, 569-578.	0.4	10
157	The effect of vanadium precursors on the electrochemical performance of Li1.1V0.9O2 as an anode material for Li-ion batteries. Journal of Electroceramics, 2014, 32, 390-395.	0.8	7
158	Excellent anti-fogging dye-sensitized solar cells based on superhydrophilic nanoparticle coatings. Nanoscale, 2014, 6, 7362-7368.	2.8	53
159	Poly(ethylene-co-acrylic acid)-g-poly(ethylene glycol) graft copolymer templated synthesis of mesoporous TiO2 thin films for quasi-solid-state dye sensitized solar cells. Thin Solid Films, 2014, 552, 68-74.	0.8	7
160	Controlling gas permeability of a graft copolymer membrane using solvent vapor treatment. Macromolecular Research, 2014, 22, 160-164.	1.0	10
161	Structural Control of Hierarchicallyâ€Ordered TiO ₂ Films by Water for Dye ensitized Solar Cells. ChemPhysChem, 2014, 15, 1841-1848.	1.0	2
162	Multifunctional Organized Mesoporous Tin Oxide Films Templated by Graft Copolymers for Dye‧ensitized Solar Cells. ChemSusChem, 2014, 7, 2037-2047.	3.6	18

JONG ΗΑΚ ΚΙΜ

#	Article	IF	CITATIONS
163	One-step Fabrication of Crack-free, Hierarchically-ordered TiO2 Films via Self-assembly of Polystyrene Bead and Preformed TiO2. Electrochimica Acta, 2014, 117, 521-527.	2.6	2
164	Surface tuned copper nanoparticles by 1-methyl-3-octylimidazolium tetrafluoroborate and its applications to facilitated CO2 transport. Chemical Engineering Journal, 2014, 235, 252-256.	6.6	16
165	Fabrication of Surfaceâ€Patterned Membranes by Means of a ZnO Nanorod Templating Method for Polymer Electrolyte Membrane Fuelâ€Cell Applications. ChemPlusChem, 2014, 79, 1109-1115.	1.3	13
166	Three-dimensional Conducting Polymer Films for Pt-free Counter Electrodes in Quasi-solid-state Dye-sensitized Solar Cells. Electrochimica Acta, 2014, 137, 34-40.	2.6	26
167	Synthesis of amphiphilic PCZ-r-PEG nanostructural copolymers and their use in CO2/N2 separation membranes. Chemical Engineering Journal, 2014, 254, 46-53.	6.6	31
168	Synthesis of poly(vinyl chloride)-g-poly(3-sulfopropyl methacrylate) graft copolymers and their use in pressure retarded osmosis (PRO) membranes. Chemical Engineering Journal, 2014, 247, 1-8.	6.6	38
169	Synthesis of Polycarbonate-r-Polyethylene Glycol Copolymer for Templated Synthesis of Mesoporous TiO ₂ Films. Journal of Nanoscience and Nanotechnology, 2014, 14, 9355-9361.	0.9	1
170	Mesoporous TiO2 Bragg Stack Templated by Graft Copolymer for Dye-sensitized Solar Cells. Scientific Reports, 2014, 4, 5505.	1.6	24
171	Hybrid Templated Synthesis of Crackâ€Free, Organized Mesoporous TiO ₂ Electrodes for High Efficiency Solidâ€State Dyeâ€Sensitized Solar Cells. Advanced Functional Materials, 2013, 23, 26-33.	7.8	45
172	Ionic liquid crystals: Synthesis, structure and applications to I2-free solid-state dye-sensitized solar cells. Macromolecular Research, 2013, 21, 315-320.	1.0	25
173	All-solid, flexible solar textiles based on dye-sensitized solar cells with ZnO nanorod arrays on stainless steel wires. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2013, 178, 1117-1123.	1.7	30
174	Oneâ€step Synthesis of Vertically Aligned Anatase Thornbushâ€like TiO ₂ Nanowire Arrays on Transparent Conducting Oxides for Solidâ€State Dyeâ€Sensitized Solar Cells. ChemSusChem, 2013, 6, 1384-1391.	3.6	23
175	Synthesis of mesoporous MgO catalyst templated by a PDMS–PEO comb-like copolymer for biodiesel production. Fuel Processing Technology, 2013, 116, 325-331.	3.7	61
176	Bioinert membranes prepared from amphiphilic poly(vinyl chloride)-g-poly(oxyethylene methacrylate) graft copolymers. Materials Science and Engineering C, 2013, 33, 1662-1670.	3.8	26
177	Nanocomposites with Graft Copolymer-Templated Mesoporous MgTiO ₃ Perovskite for CO ₂ Capture Applications. ACS Applied Materials & Interfaces, 2013, 5, 6615-6621.	4.0	44
178	Solar Cells: Oneâ€Dimensional Hierarchical Nanostructures of TiO ₂ Nanosheets on SnO ₂ Nanotubes for High Efficiency Solid‣tate Dye‣ensitized Solar Cells (Adv. Mater.) Tj ETQq	0 Ø101 rgB1	Øverlock 1
179	Oneâ€Dimensional Hierarchical Nanostructures of TiO ₂ Nanosheets on SnO ₂ Nanotubes for High Efficiency Solidâ€State Dyeâ€Sensitized Solar Cells. Advanced Materials, 2013, 25, 4893-4897.	11.1	75

180Vertically aligned anatase TiO2 nanotubes on transparent conducting substrates using polycarbonate
membranes. RSC Advances, 2013, 3, 13681.1.78

#	Article	IF	CITATIONS
181	Suppression of silver ion reduction by Al(NO3)3 complex and its application to highly stabilized olefin transport membranes. Journal of Membrane Science, 2013, 445, 156-159.	4.1	28
182	One-step synthesis of leaf-like, Fe2O3-decorated Cu structures templated by graft copolymer. Materials Letters, 2013, 107, 287-290.	1.3	0
183	Bragg Stackâ€Functionalized Counter Electrode for Solidâ€State Dyeâ€Sensitized Solar Cells. ChemSusChem, 2013, 6, 856-864.	3.6	19
184	Enhancing the Performance of Solidâ€State Dyeâ€Sensitized Solar Cells Using a Mesoporous Interfacial Titania Layer with a Bragg Stack. Advanced Functional Materials, 2013, 23, 2193-2200.	7.8	30
185	Water-Based Thixotropic Polymer Gel Electrolyte for Dye-Sensitized Solar Cells. ACS Nano, 2013, 7, 4050-4056.	7.3	89
186	Honeycombâ€Like Organized TiO ₂ Photoanodes with Dual Pores for Solidâ€State Dyeâ€Sensitized Solar Cells. Advanced Functional Materials, 2013, 23, 3901-3908.	7.8	46
187	Hybrid electrolytes prepared from ionic liquid-grafted alumina for high-efficiency quasi-solid-state dye-sensitized solar cells. Nanoscale, 2013, 5, 5341.	2.8	36
188	Synthesis of Poly(vinyl chloride)- <i>g</i> -Poly(ionic liquid) and Its Application to Tuning Surface for Copper Nanoparticles. Industrial & Engineering Chemistry Research, 2013, 52, 9607-9611.	1.8	7
189	Micron-thick, worm-like, organized TiO2 films prepared using polystyrene-b-poly(2-vinyl pyridine) block copolymer and preformed TiO2 for solid-state dye-sensitized solar cells. Electrochimica Acta, 2013, 105, 15-22.	2.6	5
190	Synthesis, structure and gas permeation of polymerized ionic liquid graft copolymer membranes. Journal of Membrane Science, 2013, 443, 54-61.	4.1	65
191	Synthesis of low-cost, rubbery amphiphilic comb-like copolymers and their use in the templated synthesis of mesoporous TiO2 films for solid-state dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2013, 15, 7345.	1.3	19
192	Mesoporous TiO2 as a nanostructured substrate for cell culture and cell patterning. RSC Advances, 2013, 3, 23673.	1.7	8
193	Experimental investigation and simulation of hollow fiber membrane process for SF ₆ recovery from GIS. Polymers for Advanced Technologies, 2013, 24, 997-1004.	1.6	14
194	Inverted Organic Photovoltaic Cells Using Three-Dimensionally Interconnected TiO ₂ Nanotube Arrays. Journal of Nanoscience and Nanotechnology, 2013, 13, 2632-2639.	0.9	4
195	Solar Cells: Honeycombâ€Like Organized TiO ₂ Photoanodes with Dual Pores for Solidâ€State Dyeâ€Sensitized Solar Cells (Adv. Funct. Mater. 31/2013). Advanced Functional Materials, 2013, 23, 3830-3830.	7.8	0
196	Employing electrostatic self-assembly of tailored nickel sulfide nanoparticles for quasi-solid-state dye-sensitized solar cells with Pt-free counter electrodes. Chemical Communications, 2012, 48, 9501.	2.2	84
197	Rubbery copolymer electrolytes containing polymerized ionic liquid for dye-sensitized solar cells. Journal of Solid State Electrochemistry, 2012, 16, 3037-3043.	1.2	29
198	Room Temperature Solidâ€State Synthesis of a Conductive Polymer for Applications in Stable I ₂ â€Free Dyeâ€Sensitized Solar Cells. ChemSusChem, 2012, 5, 2173-2180.	3.6	18

JONG HAK KIM

#	Article	IF	CITATIONS
199	Facile fabrication of vertically aligned TiO2 nanorods with high density and rutile/anatase phases on transparent conducting glasses: high efficiency dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 6131.	6.7	55
200	Graft copolymer templated synthesis of mesoporous MgO/TiO2 mixed oxide nanoparticles and their CO2 adsorption capacities. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 414, 75-81.	2.3	45
201	Low temperature synthesis of flower-like TiO2 nanospheres directly from block-graft copolymer precursors and their uses in quasi-solid-state dye-sensitized solar cells. Electrochimica Acta, 2012, 80, 27-33.	2.6	9
202	Evaluation of dye aggregation and effect of deoxycholic acid concentration on photovoltaic performance of N749-sensitized solar cell. Synthetic Metals, 2012, 162, 1503-1507.	2.1	19
203	Facilitated CO2 transport membranes utilizing positively polarized copper nanoparticles. Chemical Communications, 2012, 48, 5298.	2.2	61
204	Synthesis and gas permeation properties of poly(vinyl chloride)â€graftâ€poly(vinyl pyrrolidone) membranes. Polymers for Advanced Technologies, 2012, 23, 516-521.	1.6	18
205	Facile synthesis of size-tunable mesoporous anatase TiO2 beads using a graft copolymer for quasi-solid and all-solid dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 11079.	6.7	37
206	Characterization of inverted polymer solar cells with low-band-gap polymers as donor materials. Journal of the Korean Physical Society, 2012, 60, 2034-2037.	0.3	2
207	Nanopatterning of Mesoporous Inorganic Oxide Films for Efficient Light Harvesting of Dyeâ€5ensitized Solar Cells. Angewandte Chemie - International Edition, 2012, 51, 6864-6869.	7.2	84
208	Threshold silver concentration for facilitated olefin transport in polymer/silver salt membranes. Journal of Polymer Research, 2012, 19, 1.	1.2	15
209	Poly(vinyl chloride)-g-poly(2-(dimethylamino)ethyl methacrylate) graft copolymers templated synthesis of mesoporous TiO2 thin films for dye-sensitized solar cells. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	5
210	Poly(vinyl chloride)-graft-poly(N-vinyl caprolactam) graft copolymer: synthesis and use as template for porous TiO2 thin films in dye-sensitized solar cells. Ionics, 2012, 18, 395-402.	1.2	15
211	Preparation of nanoporous films from self-assembled poly(vinyl chloride-g-methyl methacrylate) graft copolymer. Korean Journal of Chemical Engineering, 2012, 29, 959-963.	1.2	2
212	Preparation of poly(vinylidene fluoride) nanocomposite membranes based on graft polymerization and sol–gel process for polymer electrolyte membrane fuel cells. Journal of Solid State Electrochemistry, 2012, 16, 1405-1414.	1.2	9
213	Fabrication of double layer photoelectrodes using hierarchical TiO2 nanospheres for dye-sensitized solar cells. Journal of Industrial and Engineering Chemistry, 2012, 18, 449-455.	2.9	34
214	Direct Assembly of Preformed Nanoparticles and Graft Copolymer for the Fabrication of Micrometerâ€ŧhick, Organized TiO ₂ Films: High Efficiency Solidâ€state Dyeâ€sensitized Solar Cells. Advanced Materials, 2012, 24, 519-522.	11.1	83
215	Poly(oxyethylene methacrylate)–poly(4-vinyl pyridine) comb-like polymer electrolytes for solid-state dye-sensitized solar cells. Journal of Solid State Electrochemistry, 2012, 16, 513-520.	1.2	10
216	Graft copolymer directed synthesis of micron-thick organized mesoporous TiO2 films for solid-state dye-sensitized solar cells. Chemical Communications, 2011, 47, 5882.	2.2	29

IF # ARTICLE CITATIONS Preparation of TiO2 nanowires/nanotubes using polycarbonate membranes and their uses in 2.8 dye-sensitized solar cells. Nanoscale, 2011, 3, 4162. Hierarchical TiO<inf>2</inf> spheres architectures for quasi solid state dye-sensitized solar cells by 218 0 living radical polymerization and sol-gel process., 2011, , . Fabrication of 3D interconnected porous TiO2nanotubes templated by poly(vinyl chloride-g-4-vinyl) Tj ETQq1 1 0.784314 rgBT/Overlo 219 Graft Copolymer-Templated Mesoporous TiO₂ Films Micropatterned with Poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 220 4.0 20 & Interfaces, 2011, 3, 573-581. Efficiency improvement of dye-sensitized solar cells using graft copolymer-templated mesoporous TiO2films as an interfacial layer. Journal of Materials Chemistry, 2011, 21, 1772-1779. 221 6.7 Formation of mesoporous TiO2 with large surface areas, interconnectivity and hierarchical pores for 222 6.7 25 dye-sensitized solar cells. Journal of Materials Chemistry, 2011, 21, 17872. Polymer Electrolytes Based on Grafted Inorganic Nanoparticles for Dye-Sensitized Solar Cells. Journal of Nanoscience and Nanotechnology, 2011, 11, 1718-1721. Highly efficient I2-free solid-state dye-sensitized solar cells fabricated with polymerized ionic liquid 224 2.367 and graft copolymer-directed mesoporous film. Electrochemistry Communications, 2011, 13, 1349-1352. Templated synthesis of mesoporous aluminas by graft copolymer and their CO2 adsorption capacities. 1.7 Journal of Materials Science, 2011, 46, 4020-4025 Effect of 1-butyl-3-methylimidazolium nitrate on separation properties of polymer/AgNO3 membranes for propylene/propane mixtures: Comparison between poly(2-ethyl-2-oxazoline) and poly(ethylene) Tj ETQq0 0 0 rg BT/Overlack 10 Tf 50 226 Synthesis of highly positively polarized silver nanoparticles in poly(ethylene phthalate)/AgBF4 composite. Macromolecular Research, 2011, 19, 413-416. Nanocomposite membranes consisting of poly(vinyl chloride) graft copolymer and surface-modified 228 1.0 18 silica nanoparticles. Macromolecular Research, 2011, 19, 1195-1201. Effect of oligomer on dye-sensitized solar cells employing polymer electrolytes. Korean Journal of 1.2 Chemical Engineering, 2011, 28, 138-142. Use of block copolymer as compatibilizer in polyimide/zeolite composite membranes. Polymers for 230 1.6 21 Advanced Technológies, 2011, 22, 768-772. Proton conducting grafted/crosslinked membranes prepared from poly(vinylidene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 187 1.6 1434-1441. Enhanced Performance of I₂â€Free Solidâ€State Dyeâ€Sensitized Solar Cells with Conductive 232 7.8 76 Polymer up to 6.8%. Advanced Functional Materials, 2011, 21, 4633-4639. Solar Cells: Enhanced Performance of I2-Free Solid-State Dye-Sensitized Solar Cells with Conductive 7.8 Polymer up to 6.8% (Adv. Funct. Mater. 24/2011). Advanced Functional Materials, 2011, 21, 4698-4698. Highly Efficient, Iodineâ€Free Dyeâ€Sensitized Solar Cells with Solidâ€State Synthesis of Conducting 234 11.1 183 Polymers. Advanced Materials, 2011, 23, 1641-1646.

JONG HAK KIM

#	Article	IF	CITATIONS
235	Proton conducting crosslinked polymer electrolyte membranes based on SBS block copolymer. Journal of Applied Polymer Science, 2011, 121, 3283-3291.	1.3	14
236	Performance enhancement of dye-sensitized solar cells using nanostructural TiO2 films prepared by a graft polymerization and sol–gel process. Electrochimica Acta, 2011, 56, 3182-3191.	2.6	15
237	Proton-conducting nanocomposite membranes based on P(VDF-co-CTFE)-g-PSSA graft copolymer and TiO2–PSSA nanoparticles. International Journal of Hydrogen Energy, 2011, 36, 1820-1827.	3.8	22
238	Synthesis and characterization of TiO2/Ag/polymer ternary nanoparticles via surface-initiated atom transfer radical polymerization. Applied Surface Science, 2011, 257, 8301-8306.	3.1	20
239	Dye-sensitized solar cells employing amphiphilic poly(ethylene glycol) electrolytes. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 217, 169-176.	2.0	23
240	Nanostructural TiO <inf>2</inf> films with high surface areas and controllable pore sizes for high performance dye-sensitized solar cells. , 2011, , .		0
241	Use of Amphiphilic Graft Copolymer as Dispersant for Carbon Nanotubes. Porrime, 2011, 35, 615-618.	0.0	0
242	Nanoscale Graft Copolymer Templates Decorated by Silver Bromide Nanoparticles Arrays. Journal of Nanoscience and Nanotechnology, 2010, 10, 6907-6911.	0.9	1
243	Structure control of organized mesoporous TiO ₂ films templated by graft copolymers for dye-sensitized solar cells. Chemical Communications, 2010, 46, 1935-1937.	2.2	98
244	Quasi solid-state dye-sensitized solar cells based on P(VDF-co-CTFE) graft copolymer electrolytes. Current Applied Physics, 2010, 10, S414-S417.	1.1	3
245	Nanocomposite proton conducting membranes based on amphiphilic PVDF graft copolymer. Macromolecular Research, 2010, 18, 271-278.	1.0	23
246	Preparation and characterization of anhydrous polymer electrolyte membranes based on poly(vinyl) Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf :
247	Surface modification of silica nanoparticles with hydrophilic polymers. Journal of Industrial and Engineering Chemistry, 2010, 16, 517-522.	2.9	106
248	Fabrication of hole-patterned TiO2 photoelectrodes for solid-state dye-sensitized solar cells. Electrochimica Acta, 2010, 56, 68-73.	2.6	13
249	Templated synthesis of porous TiO2 thin films using amphiphilic graft copolymer and their use in dye-sensitized solar cells. Thin Solid Films, 2010, 519, 158-163.	0.8	14
250	Azide-induced crosslinking of electrolytes and its application in solid-state dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2010, 94, 436-441.	3.0	18
251	Highly bendable composite photoelectrode prepared from TiO2/polymer blend for low temperature fabricated dye-sensitized solar cells. Current Applied Physics, 2010, 10, e171-e175.	1.1	25

252Solid-state dye-sensitized solar cells employing one-pot synthesized supramolecular electrolytes with
multiple hydrogen bonding. Electrochimica Acta, 2010, 55, 2567-2574.2.68

JONG ΗΑΚ ΚΙΜ

#	Article	IF	CITATIONS
253	Amphiphilic poly(vinyl chloride)-g-poly(oxyethylene methacrylate) graft polymer electrolytes: Interactions, nanostructures and applications to dye-sensitized solar cells. Electrochimica Acta, 2010, 55, 4976-4981.	2.6	55
254	Antifouling poly(vinylidene fluoride) ultrafiltration membranes containing amphiphilic comb polymer additive. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 183-189.	2.4	30
255	Synthesis and characterization of grafted/crosslinked proton conducting membranes based on amphiphilic PVDF copolymer. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 1110-1117.	2.4	19
256	Self-assembled structures of hydrogen-bonded poly(vinyl chloride- <i>g</i> -4-vinyl pyridine) graft copolymers. Nanotechnology, 2010, 21, 355604.	1.3	11
257	Preparation of TiO2 spheres with hierarchical pores via grafting polymerization and sol–gel process for dye-sensitized solar cells. Journal of Materials Chemistry, 2010, 20, 8521.	6.7	91
258	Use of graft copolymer for preparation of organized mesoporous TiO <inf>2</inf> films. , 2010, , .		0
259	Templated synthesis of Ag loaded TiO2 nanostructures using amphiphilic polyelectrolyte. Materials Letters, 2009, 63, 1360-1362.	1.3	18
260	Preparation and characterization of crosslinked proton conducting membranes based on chitosan and PSSA-MA copolymer. Solid State Ionics, 2009, 180, 998-1002.	1.3	51
261	Surface-initiated atom transfer radical polymerization from TiO2 nanoparticles. Applied Surface Science, 2009, 255, 3739-3744.	3.1	52
262	Synthesis and characterization of poly(ether sulfone) grafted poly(styrene sulfonic acid) for proton conducting membranes. Korean Journal of Chemical Engineering, 2009, 26, 518-522.	1.2	24
263	Graft polymerization of poly(epichlorohydrin-g-poly((oxyethylene) methacrylate)) using ATRP and its polymer electrolyte with KI. Ionics, 2009, 15, 163-167.	1.2	13
264	Proton-conducting composite membranes from graft copolymer electrolytes and phosphotungstic acid for fuel cells. Ionics, 2009, 15, 439-444.	1.2	9
265	Preparation and characterization of crosslinked cellulose/sulfosuccinic acid membranes as proton conducting electrolytes. Ionics, 2009, 15, 555-560.	1.2	30
266	Olefin separation performances and coordination behaviors of facilitated transport membranes based on poly(styrene-b-isoprene-b-styrene)/silver salt complexes. Macromolecular Research, 2009, 17, 104-109.	1.0	9
267	Templated formation of silver nanoparticles using amphiphilic poly(epichlorohydrine-g-styrene) film. Macromolecular Research, 2009, 17, 301-306.	1.0	6
268	Synthesis of crosslinked polystyrene-b-poly(hydroxyethyl methacrylate)-b-poly(styrene sulfonic acid) triblock copolymer for electrolyte membranes. Macromolecular Research, 2009, 17, 325-331.	1.0	14
269	Composite polymer electrolyte membranes comprising P(VDFâ€ <i>co</i> TFE)â€ <i>g</i> â€PSSA graft copolymer and zeolite for fuel cell applications. Polymers for Advanced Technologies, 2009, 20, 1146-1151.	1.6	17
270	Prediction of the glass transition temperature of semicrystalline polymer/salt complexes. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 793-798.	2.4	1

#	Article	IF	CITATIONS
271	Amphiphilic polymer electrolytes consisting of PVCâ€≺i>gâ€POEM combâ€ŀike copolymer and LiCF ₃ SO ₃ . Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 1443-1451.	2.4	23
272	Synthesis and gas permeation properties of amphiphilic graft copolymer membranes. Journal of Membrane Science, 2009, 345, 128-133.	4.1	55
273	Propylene-induced plasticization in silver polymer electrolyte membranes. Journal of Industrial and Engineering Chemistry, 2009, 15, 8-11.	2.9	7

Preparation and characterization of proton conducting polysulfone grafted poly(styrene sulfonic) Tj ETQq0 0 0 rgBJ (Overlock 10 Tf 50

274		2.9	36
275	Synthesis of silver halide nanocomposites templated by amphiphilic graft copolymer and their use as olefin carrier for facilitated transport membranes. Journal of Membrane Science, 2009, 339, 49-56.	4.1	34
276	Synthesis and characterization of AgBr nanocomposites by templated amphiphilic comb polymer. Journal of Colloid and Interface Science, 2009, 338, 486-490.	5.0	20
277	Transition behavior and ionic conductivity of lithium perchlorate-doped polystyrene-b-poly(2-vinylpyridine). Polymer, 2009, 50, 3822-3827.	1.8	15
278	Behavior of Inorganic Nanoparticles in Silver Polymer Electrolytes and Their Effects on Silver Ion Activity for Facilitated Olefin Transport. Industrial & Engineering Chemistry Research, 2009, 48, 8650-8654.	1.8	11
279	Role of grafted chains for the in situ formation of Ag nanoparticles within poly(epichlorohydrin)-g-polymethacrylate films. Current Applied Physics, 2009, 9, e298-e300.	1.1	0
280	State of the Art on Research, Development and Application ofMembranes in Korea. Membrane, 2009, 34, 2-12.	0.0	0
281	Proton conducting crosslinked membranes by polymer blending of triblock copolymer and poly(vinyl) Tj ETQq1 1	0.784314	rgBT /Ove
282	Selective coordination of silver ions to poly(styrene-b-(ethylene-co-butylene)-b-styrene) and its influence on morphology and facilitated olefin transport. Macromolecular Research, 2008, 16, 676-681.	1.0	4
283	PEO electrolytes containing dioctyl phthalate (DOP) for dye-sensitized nanocrystalline TiO2 solar cells. Ionics, 2008, 14, 143-148.	1.2	4
284	Sulfonated poly(arylene ether sulfone) membranes based on biphenol for direct methanol fuel cells. Korean Journal of Chemical Engineering, 2008, 25, 732-737.	1.2	20
285	Synthesis of amphiphilic graft copolymer brush and its use as template film for the preparation of silver nanoparticles. Journal of Polymer Science Part A, 2008, 46, 3911-3918.	2.5	27
286	Composite polymer electrolyte membranes comprising triblock copolymer and heteropolyacid for fuel cell applications. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 691-701.	2.4	24
287	Templated synthesis of silver nanoparticles in amphiphilic poly(vinylidene) Tj ETQq1 1 0.784314 rgBT /Overlock 1 Polymer Physics, 2008, 46, 702-709.	0 Tf 50 10 2.4)7 Td (fluoi 27
288	Proton conducting membranes based on poly(vinyl chloride) graft copolymer electrolytes. Polymers for Advanced Technologies, 2008, 19, 915-921.	1.6	22

#	Article	IF	CITATIONS
289	Molecular thermodynamic model of the glass transition temperature: dependence on molecular weight. Polymers for Advanced Technologies, 2008, 19, 944-946.	1.6	8
290	Nanofiltration membranes based on poly(vinylidene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 707 Td (fluorideâ€≺i Technologies, 2008, 19, 1643-1648.	>co 1.6	chlorotrifluorc 14
291	Preparation and characterization of protonâ€conducting crosslinked diblock copolymer membranes. Journal of Applied Polymer Science, 2008, 107, 819-824.	1.3	25
292	Formation of silver nanoparticles created <i>in situ</i> in an amphiphilic block copolymer film. Journal of Applied Polymer Science, 2008, 110, 2352-2357.	1.3	11
293	Proton conducting poly(vinylidene fluoride-co-chlorotrifluoroethylene) graft copolymer electrolyte membranes. Journal of Membrane Science, 2008, 313, 315-322.	4.1	73
294	Effect of the polarity of silver nanoparticles induced by ionic liquids on facilitated transport for the separation of propylene/propane mixtures. Journal of Membrane Science, 2008, 322, 281-285.	4.1	62
295	Polyamide thin-film nanofiltration membranes containing TiO2 nanoparticles. Desalination, 2008, 219, 48-56.	4.0	410
296	Synthesis and characterization of crosslinked triblock copolymers for fuel cells. Desalination, 2008, 233, 104-112.	4.0	13
297	Correlation between anions of ionic liquids and reduction of silver ions in facilitated olefin transport membranes. Desalination, 2008, 233, 327-332.	4.0	21
298	Synthesis of TiO2 nanoparticles using amphiphilic POEM-b-PS-b-POEM triblock copolymer template film. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 329, 51-57.	2.3	5
299	Single-step synthesis of proton conducting poly(vinylidene fluoride) (PVDF) graft copolymer electrolytes. European Polymer Journal, 2008, 44, 932-939.	2.6	99
300	Nanocomposite membranes containing positively polarized gold nanoparticles for facilitated olefin transport. Journal of Membrane Science, 2008, 321, 90-93.	4.1	37
301	Anhydrous proton conducting membranes based on crosslinked graft copolymer electrolytes. Journal of Membrane Science, 2008, 325, 319-325.	4.1	49
302	Templated synthesis of Ag–Au bimetallic nanoparticles by amphiphilic PVC-g-PSSA graft copolymer film. Materials Letters, 2008, 62, 4492-4493.	1.3	3
303	Oligomer Approaches for Solid-State Dye-Sensitized Solar Cells Employing Polymer Electrolytes. Journal of Physical Chemistry C, 2007, 111, 5222-5228.	1.5	104
304	Nanocomposite polymer electrolytes containing silica nanoparticles: Comparison between poly(ethylene glycol) and poly(ethylene oxide) dimethyl ether. Journal of Applied Polymer Science, 2007, 106, 4083-4090.	1.3	23
305	One-pot synthesis of supramolecular polymer containing quadruple hydrogen bonding units. European Polymer Journal, 2007, 43, 4460-4465.	2.6	10
306	Silver nanoparticles immobilized on thin film composite polyamide membrane: characterization, nanofiltration, antifouling properties. Polymers for Advanced Technologies, 2007, 18, 562-568.	1.6	290

#	Article	IF	CITATIONS
307	Thermodynamic model of gas permeability in polymer membranes. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 661-665.	2.4	4
308	Nanostructure, interactions, and conductivities of polymer electrolytes comprising silver salt and microphase-separated graft copolymer. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 1018-1025.	2.4	13
309	Theoretical consideration on the glass transition behavior of polymer nanocomposites. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 2232-2238.	2.4	47
310	In situ formation of silver nanoparticles within an amphiphilic graft copolymer film. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 1283-1290.	2.4	24
311	Propylene sorption and coordinative interactions for poly(<i>N</i> â€vinyl pyrrolidoneâ€ <i>co</i> â€vinyl) Tj ETG 2263-2269.	Qq1 1 0.78 2.4	34314 rgBT /(10
312	Supramolecular polymer/metal salt complexes containing quadruple hydrogen bonding units. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 3181-3188.	2.4	11
313	Ionic liquid as a solvent and the long-term separation performance in a polymer/silver salt complex membrane. Macromolecular Research, 2007, 15, 167-172.	1.0	26
314	Novel composite membranes comprising silver salts physically dispersed in poly(ethylene-co-propylene) for the separation of propylene/propane. Macromolecular Research, 2007, 15, 343-347.	1.0	10
315	Synthesis and characterization of nanocomposite films consisting of vanadium oxide and microphase-separated graft copolymer. Macromolecular Research, 2007, 15, 553-559.	1.0	9
316	Control of Ionic Interactions in Silver Saltâ^'Polymer Complexes with Ionic Liquids:  Implications for Facilitated Olefin Transport. Chemistry of Materials, 2006, 18, 1789-1794.	3.2	45
317	Solâ^'Gel Synthesis of Vanadium Oxide within a Block Copolymer Matrix. Chemistry of Materials, 2006, 18, 2828-2833.	3.2	51
318	Thermodynamic Model of the Glass Transition Behavior for Miscible Polymer Blends. Macromolecules, 2006, 39, 1297-1299.	2.2	25
319	Chemical Activation of AgNO3to Form Olefin Complexes Induced by Strong Coordinative Interactions with Phthalate Oxygens of Poly(ethylene phthalate). Industrial & Engineering Chemistry Research, 2006, 45, 4011-4014.	1.8	13
320	Effect of the polymer matrix on the formation of silver nanoparticles in polymer–silver salt complex membranes. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 1168-1178.	2.4	29
321	Structure and separation properties of ï€-complex membranes comprising poly(hexamethylenevinylene) and silver tetrafluoroborate. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 1434-1441.	2.4	2
322	Nanocomposite silver polymer electrolytes as facilitated olefin transport membranes. Journal of Membrane Science, 2006, 285, 102-107.	4.1	45
323	Dye-sensitized solar cells based on crosslinked poly(ethylene glycol) electrolytes. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 183, 15-21.	2.0	56
324	FT-raman studies on ionic interactions in π-complexes of poly(hexamethylenevinylene) with silver salts. Macromolecular Research, 2006, 14, 199-204.	1.0	3

#	Article	IF	CITATIONS
325	The structural transitions of π-complexes of poly(styrene-b-butadiene-b-styrene) block copolymers with silver salts and their relation to facilitated olefin transport. Journal of Membrane Science, 2006, 281, 369-376.	4.1	26
326	Unusual separation property of propylene/propane mixtures through polymer/silver complex membranes containing mixed salts. Journal of Membrane Science, 2005, 248, 171-176.	4.1	30
327	Effect of amino acids in polymer/silver salt complex membranes on facilitated olefin transport. Journal of Membrane Science, 2005, 248, 201-206.	4.1	24
328	Long-term separation performance of phthalate polymer/silver salt complex membranes for olefin/paraffin separation. Macromolecular Research, 2005, 13, 162-166.	1.0	12
329	Silver polymer electrolyte membranes for facilitated olefint transport: carrier properties, transport mechanism and separation performance. Macromolecular Research, 2004, 12, 145-155.	1.0	30
330	Structural changes of silver polymer electrolytes: Comparison between poly(2-ethyl-2-oxazoline) and poly(N-vinyl pyrrolidone) complexes with silver salt. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 232-237.	2.4	9
331	Structure and coordination properties of facilitated olefin transport membranes consisting of crosslinked poly(vinyl alcohol) and silver hexafluoroantimonate. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 621-628.	2.4	22
332	?-complexes of polystyrene with silver salts and their use as facilitated olefin transport membranes. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 2263-2269.	2.4	28
333	Complexation of phthalate oxygens in poly(ethylene phthalate) with silver ions and its effect on the formation of silver nanoparticles. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 3344-3350.	2.4	11
334	Olefin-induced dissolution of silver salts physically dispersed in inert polymers and their application to olefin/paraffin separation. Journal of Membrane Science, 2004, 241, 403-407.	4.1	56
335	Dependence of facilitated olefin transport on the thickness of silver polymer electrolyte membranes. Journal of Membrane Science, 2004, 236, 209-212.	4.1	18
336	Highly stabilized silver polymer electrolytes and their application to facilitated olefin transport membranes. Journal of Membrane Science, 2004, 236, 163-169.	4.1	57
337	Dye-sensitized nanocrystalline solar cells based on composite polymer electrolytes containing fumed silica nanoparticles. Chemical Communications, 2004, , 1662.	2.2	202
338	Unusual facilitated olefin transport through polymethacrylate/silver salt complexes. Macromolecular Research, 2003, 11, 375-381.	1.0	14
339	Anomalous temperature dependence of facilitated propylene transport in silver polymer electrolyte membranes. Journal of Membrane Science, 2003, 227, 197-206.	4.1	41
340	Facilitated transport of ethylene across polymer membranes containing silver salt: effect of HBF4 on the photoreduction of silver ions. Journal of Membrane Science, 2003, 212, 283-288.	4.1	78
341	Analysis of the Glass Transition Behavior of Polymerâ^'Salt Complexes:Â An Extended Configurational Entropy Model. Journal of Physical Chemistry B, 2003, 107, 5901-5905.	1.2	48
342	Revelation of Facilitated Olefin Transport through Silver-Polymer Complex Membranes Using Anion Complexation. Macromolecules, 2003, 36, 4577-4581.	2.2	59

JONG ΗΑΚ ΚΙΜ

#	Article	IF	CITATIONS
343	Role of Polymer Matrix in Polymer/Silver Complexes for Structure, Interactions, and Facilitated Olefin Transport. Macromolecules, 2003, 36, 6183-6188.	2.2	87
344	Enhancement of facilitated olefin transport by amino acid in silver–polymer complex membranes. Chemical Communications, 2003, , 768-769.	2.2	11
345	Spectroscopic Interpretation of Silver Ion Complexation with Propylene in Silver Polymer Electrolytes. Journal of Physical Chemistry B, 2002, 106, 2786-2790.	1.2	107
346	New Insights into the Coordination Mode of Silver Ions Dissolved in Poly(2-ethyl-2-oxazoline) and Its Relation to Facilitated Olefin Transportâ€. Macromolecules, 2002, 35, 5250-5255.	2.2	79
347	Coordination structure of various ligands in crosslinked PVA to silver ions for facilitated olefin transport. Chemical Communications, 2002, , 2732-2733.	2.2	69
348	Complexation Mechanism of Olefin with Silver Ions Dissolved in a Polymer Matrix and its Effect on Facilitated Olefin Transport. Chemistry - A European Journal, 2002, 8, 650-654.	1.7	64
349	Ionic interaction behavior and facilitated olefin transport in poly(n-vinyl pyrrolidone):Silver triflate electrolytes; Effect of molecular weight. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 1813-1820.	2.4	24
350	Role of Transient Cross-Links for Transport Properties in Silverâ^'Polymer Electrolytes. Macromolecules, 2001, 34, 6052-6055.	2.2	61
351	Wide-Angle X-ray Scattering Studies on the Structural Properties of Polymer Electrolytes Containing Silver Ions. Macromolecules, 2001, 34, 9087-9092.	2.2	33
352	Phase behavior and mechanism of membrane formation for polyimide/DMSO/water system. Journal of Membrane Science, 2001, 187, 47-55.	4.1	91
353	Phase behavior and morphological studies of polyimide/PVP/solvent/water systems by phase inversion. Journal of Applied Polymer Science, 2001, 81, 3481-3488.	1.3	51