
Thierry Durand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/519972/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	α-Linolenic acid and product octadecanoids in Styrian pumpkin seeds and oils: How processing impacts lipidomes of fatty acid, triacylglycerol and oxylipin molecular structures. Food Chemistry, 2022, 371, 131194.	4.2	10
2	Discovery and quantification of lipoamino acids in bacteria. Analytica Chimica Acta, 2022, 1193, 339316.	2.6	4
3	Alpha-linolenic acid, phytoprostanes and phytofurans in plant, algae and food. Advances in Botanical Research, 2022, 101, 437-468.	0.5	7
4	Isoprostanoid Plasma Levels Are Relevant to Cerebral Adrenoleukodystrophy Disease. Life, 2022, 12, 146.	1.1	2
5	Linotrins: Omega-3 oxylipins featuring an E,Z,E conjugated triene motif are present in the plant kingdom and alleviate inflammation in LPS-challenged microglial cells. European Journal of Medicinal Chemistry, 2022, 231, 114157.	2.6	6
6	Synthesis of Fatty Acid Bioconjugates and Related Derivatives. European Journal of Organic Chemistry, 2022, 2022, .	1.2	3
7	Neuroprotective effects of DHA-derived peroxidation product 4(RS)-4-F4t-neuroprostane on microglia. Free Radical Biology and Medicine, 2022, 185, 1-5.	1.3	12
8	Polyunsaturated fatty acids and fatty acid-derived lipid mediators: Recent advances in the understanding of their biosynthesis, structures, and functions. Progress in Lipid Research, 2022, 86, 101165.	5.3	164
9	Intranasal Administration of Nanovectorized Docosahexaenoic Acid (DHA) Improves Cognitive Function in Two Complementary Mouse Models of Alzheimer's Disease. Antioxidants, 2022, 11, 838.	2.2	9
10	New lipophenols prevent carbonyl and oxidative stresses involved in macular degeneration. Free Radical Biology and Medicine, 2021, 162, 367-382.	1.3	14
11	Peripancreatic Adipose Tissue Remodeling and Inflammation during High Fat Intake of Palm Oils or Lard in Rats. Nutrients, 2021, 13, 1134.	1.7	4
12	Phytoprostanes and phytofurans modulate COX-2-linked inflammation markers in LPS-stimulated THP-1 monocytes by lipidomics workflow. Free Radical Biology and Medicine, 2021, 167, 335-347.	1.3	9
13	Lipid Peroxidation Assessment in Preclinical Alzheimer Disease Diagnosis. Antioxidants, 2021, 10, 1043.	2.2	13
14	Decreased Fatty Acid Transporter FABP1 and Increased Isoprostanes and Neuroprostanes in the Human Term Placenta: Implications for Inflammation and Birth Weight in Maternal Pre-Gestational Obesity. Nutrients, 2021, 13, 2768.	1.7	9
15	Do Levels of Lipid Peroxidation Biomarkers Reflect the Degree of Brain Injury in Newborns?. Antioxidants and Redox Signaling, 2021, 35, 1467-1475.	2.5	13
16	Unravelling the capacity of hydroxytyrosol and its lipophenolic derivates to modulate the H2O2-induced isoprostanoid profile of THP-1 monocytes by UHPLC-QqQ-MS/MS lipidomic workflow. Microchemical Journal, 2021, 170, 106703.	2.3	3
17	Long-term intake of 9-PAHPA or 9-OAHPA modulates favorably the basal metabolism and exerts an insulin sensitizing effect in obesogenic diet-fed mice. European Journal of Nutrition, 2021, 60, 2013-2027.	1.8	20
18	Distinct roles of adipose triglyceride lipase and hormone-sensitive lipase in the catabolism of triacylglycerol estolides. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	39

#	Article	IF	CITATIONS
19	Fatty Acid Hydroxytyrosyl Esters of Olive Oils Are Bioaccessible According to Simulated <i>In Vitro</i> Gastrointestinal Digestion: Unraveling the Role of Digestive Enzymes on Their Stability. Journal of Agricultural and Food Chemistry, 2021, 69, 14165-14175.	2.4	4
20	Phytoprostanes from Date Palm Fruit and Byproducts: Five Different Varieties Grown in Two Different Locations As Potential sources. Journal of Agricultural and Food Chemistry, 2021, 69, 13754-13761.	2.4	2
21	Dietary omega-3 PUFA improved tubular function after ischemia induced acute kidney injury in mice but did not attenuate impairment of renal function. Prostaglandins and Other Lipid Mediators, 2020, 146, 106386.	1.0	18
22	Urinary oxylipin signature as biomarkers to monitor the allograft function during the first six months post-renal transplantation. Free Radical Biology and Medicine, 2020, 146, 340-349.	1.3	7
23	Lipokine 5-PAHSA Is Regulated by Adipose Triglyceride Lipase and Primes Adipocytes for De Novo Lipogenesis in Mice. Diabetes, 2020, 69, 300-312.	0.3	43
24	Update on LIPID MAPS classification, nomenclature, and shorthand notation for MS-derived lipid structures. Journal of Lipid Research, 2020, 61, 1539-1555.	2.0	372
25	Effects of Deficit Irrigation, Rootstock, and Roasting on the Contents of Fatty Acids, Phytoprostanes, and Phytofurans in Pistachio Kernels. Journal of Agricultural and Food Chemistry, 2020, 68, 8915-8924.	2.4	14
26	Evaluation of <i>Phoenix dactylifera</i> Edible Parts and Byproducts as Sources of Phytoprostanes and Phytofurans. Journal of Agricultural and Food Chemistry, 2020, 68, 8942-8950.	2.4	10
27	Isoprostanoid Profiling of Marine Microalgae. Biomolecules, 2020, 10, 1073.	1.8	18
28	Oxylipin regulation by phenolic compounds from coffee beverage: Positive outcomes from a randomized controlled trial in healthy adults and macrophage derived foam cells. Free Radical Biology and Medicine, 2020, 160, 604-617.	1.3	14
29	Understanding FAHFAs: From structure to metabolic regulation. Progress in Lipid Research, 2020, 79, 101053.	5.3	64
30	Chemical Compositional Changes in Over-Oxidized Fish Oils. Foods, 2020, 9, 1501.	1.9	14
31	Total Synthesis of a Docosahexaenoic Acid Prostanoid Using an Intramolecular Organocatalytic Michael Reaction of a Formyl-Enal Derivative. Organic Letters, 2020, 22, 7455-7459.	2.4	8
32	FAHFAs Regulate the Proliferation of C2C12 Myoblasts and Induce a Shift toward a More Oxidative Phenotype in Mouse Skeletal Muscle. International Journal of Molecular Sciences, 2020, 21, 9046.	1.8	8
33	Bioactive plant oxylipins-based lipidomics in eighty worldwide commercial dark chocolates: Effect of cocoa and fatty acid composition on their dietary burden. Microchemical Journal, 2020, 157, 105083.	2.3	7
34	Phytoprostanes and Phytofurans—Oxidative Stress and Bioactive Compounds—in Almonds are Affected by Deficit Irrigation in Almond Trees. Journal of Agricultural and Food Chemistry, 2020, 68, 7214-7225.	2.4	20
35	First Total Syntheses of Novel Nonâ€Enzymatic Polyunsaturated Fatty Acid Metabolites and Their Identification in Edible Oils. Chemistry - A European Journal, 2020, 26, 10090-10098.	1.7	5
36	Isopropylâ€phloroglucinolâ€DHA protects outer retinal cells against lethal dose of allâ€ <i>trans</i> â€retinal. Journal of Cellular and Molecular Medicine, 2020, 24, 5057-5069.	1.6	11

#	Article	IF	CITATIONS
37	Targeted Lipidomics Profiling Reveals the Generation of Hydroxytyrosol-Fatty Acids in Hydroxytyrosol-Fortified Oily Matrices: New Analytical Methodology and Cytotoxicity Evaluation. Journal of Agricultural and Food Chemistry, 2020, 68, 7789-7799.	2.4	9
38	Preclinical pharmacology of a lipophenol in a mouse model of light-induced retinopathy. Experimental and Molecular Medicine, 2020, 52, 1090-1101.	3.2	8
39	Long-term high intake of 9-PAHPA or 9-OAHPA increases basal metabolism and insulin sensitivity but disrupts liver homeostasis in healthy mice. Journal of Nutritional Biochemistry, 2020, 79, 108361.	1.9	31
40	Combination of Lutein and Zeaxanthin, and DHA Regulated Polyunsaturated Fatty Acid Oxidation in H2O2-Stressed Retinal Cells. Neurochemical Research, 2020, 45, 1007-1019.	1.6	23
41	Nonenzymatic oxygenated metabolite of docosahexaenoic acid, 4(<i>RS</i>)â€4â€F _{4t} â€neuroprostane, acts as a bioactive lipid molecule in neuronal cells. FEBS Letters, 2020, 594, 1797-1808.	1.3	22
42	Moving forward with isoprostanes, neuroprostanes and phytoprostanes: where are we now?. Essays in Biochemistry, 2020, 64, 463-484.	2.1	35
43	The Value of Legume Foods as a Dietary Source of Phytoprostanes and Phytofurans Is Dependent on Species, Variety, and Growing Conditions. European Journal of Lipid Science and Technology, 2019, 121, 1800484.	1.0	17
44	Assessment of lipid peroxidation and artificial neural network models in early Alzheimer Disease diagnosis. Clinical Biochemistry, 2019, 72, 64-70.	0.8	14
45	Limited Antioxidant Effect of Rosemary in Lipid Oxidation of Pan-Fried Salmon. Biomolecules, 2019, 9, 313.	1.8	13
46	Does Pasteurized Donor Human Milk Efficiently Protect Preterm Infants Against Oxidative Stress?. Antioxidants and Redox Signaling, 2019, 31, 791-799.	2.5	11
47	Bis-allylic Deuterated DHA Alleviates Oxidative Stress in Retinal Epithelial Cells. Antioxidants, 2019, 8, 447.	2.2	8
48	Increase in omega-6 and decrease in omega-3 polyunsaturated fatty acid oxidation elevates the risk of exudative AMD development in adults with Chinese diet. Free Radical Biology and Medicine, 2019, 145, 349-356.	1.3	15
49	Identification and quantification of phytoprostanes and phytofurans of coffee and cocoa by- and co-products. Food and Function, 2019, 10, 6882-6891.	2.1	12
50	New screening approach for Alzheimer's disease risk assessment from urine lipid peroxidation compounds. Scientific Reports, 2019, 9, 14244.	1.6	25
51	Phenolic, oxylipin and fatty acid profiles of the Chilean hazelnut (Gevuina avellana): Antioxidant activity and inhibition of pro-inflammatory and metabolic syndrome-associated enzymes. Food Chemistry, 2019, 298, 125026.	4.2	33
52	Lipid Mediators From Timothy Grass Pollen Contribute to the Effector Phase of Allergy and Prime Dendritic Cells for Glycolipid Presentation. Frontiers in Immunology, 2019, 10, 974.	2.2	25
53	Garlic Supplementation Modified Enzymatic Omegaâ€6 Polyunsaturated Fatty Acid Oxidation in Mild Hypercholesterolemia. European Journal of Lipid Science and Technology, 2019, 121, 1900069.	1.0	6
54	Increased isoprostanoid levels in brain from murine model of Krabbe disease – Relevance of isoprostanes, dihomo-isoprostanes and neuroprostanes to disease severity. Free Radical Biology and Medicine, 2019, 139, 46-54.	1.3	12

#	Article	IF	CITATIONS
55	Formation of trans-epoxy fatty acids correlates with formation of isoprostanes and could serve as biomarker of oxidative stress. Prostaglandins and Other Lipid Mediators, 2019, 144, 106334.	1.0	14
56	Obesogenic diet in aging mice disrupts gut microbe composition and alters neutrophi:lymphocyte ratio, leading to inflamed milieu in acute heart failure. FASEB Journal, 2019, 33, 6456-6469.	0.2	47
57	Effect of Dietary <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">id="M1"><mml:mi>n</mml:mi><mml:mo>â€</mml:mo><mml:mn>3</mml:mn></mml:math> Source on Rabbit Male Reproduction. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-13.	1.9	34
58	Comparative study of different cocoa (Theobroma cacao L.) clones in terms of their phytoprostanes and phytofurans contents. Food Chemistry, 2019, 280, 231-239.	4.2	20
59	Validated analytical method to determine new salivary lipid peroxidation compounds as potential neurodegenerative biomarkers. Journal of Pharmaceutical and Biomedical Analysis, 2019, 164, 742-749.	1.4	21
60	Potential of <scp> <i>Physalis peruviana </i> </scp> calyces as a low ost valuable resource of phytoprostanes and phenolic compounds. Journal of the Science of Food and Agriculture, 2019, 99, 2194-2204.	1.7	34
61	Les FAHFAs, une nouvelle classe de lipides endogènes bioactifs. Cahiers De Nutrition Et De Dietetique, 2018, 53, 100-105.	0.2	1
62	Reliable determination of new lipid peroxidation compounds as potential early Alzheimer Disease biomarkers. Talanta, 2018, 184, 193-201.	2.9	44
63	Sorting out the phytoprostane and phytofuran profile in vegetable oils. Food Research International, 2018, 107, 619-628.	2.9	28
64	Nrf2-Mediated Antioxidant Defense and Peroxiredoxin 6 Are Linked to Biosynthesis of Palmitic Acid Ester of 9-Hydroxystearic Acid. Diabetes, 2018, 67, 1190-1199.	0.3	52
65	<i>Aronia</i> – <i>citrus</i> juice (polyphenol-rich juice) intake and elite triathlon training: a lipidomic approach using representative oxylipins in urine. Food and Function, 2018, 9, 463-475.	2.1	33
66	Levels of palmitic acid ester of hydroxystearic acid (PAHSA) are reduced in the breast milk of obese mothers. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 126-131.	1.2	53
67	Relevance of 4-F4t-neuroprostane and 10-F4t-neuroprostane to neurological diseases. Free Radical Biology and Medicine, 2018, 115, 278-287.	1.3	30
68	Oxidized LDL triggers changes in oxidative stress and inflammatory biomarkers in human macrophages. Redox Biology, 2018, 15, 1-11.	3.9	134
69	Development of an LC-ESI(-)-MS/MS method for the simultaneous quantification of 35 isoprostanes and isofurans derived from the major n3- and n6-PUFAs. Analytica Chimica Acta, 2018, 1037, 63-74.	2.6	65
70	Structural/Functional Matches and Divergences of Phytoprostanes and Phytofurans with Bioactive Human Oxylipins. Antioxidants, 2018, 7, 165.	2.2	26
71	New Lipophenol Antioxidants Reduce Oxidative Damage in Retina Pigment Epithelial Cells. Antioxidants, 2018, 7, 197.	2.2	29
72	Non-Enzymatic Synthesis of Bioactive Isoprostanoids in the Diatom <i>Phaeodactylum</i> following Oxidative Stress. Plant Physiology, 2018, 178, 1344-1357.	2.3	34

#	Article	IF	CITATIONS
73	Dietary Oat Bran Increases Some Proinflammatory Polyunsaturated Fattyâ€Acid Oxidation Products and Reduces Antiâ€Inflammatory Products in Apolipoprotein E ^{â^'/â^'} Mice. Lipids, 2018, 53, 785-796.	0.7	6
74	Plasma lipid peroxidation biomarkers for early and non-invasive Alzheimer Disease detection. Free Radical Biology and Medicine, 2018, 124, 388-394.	1.3	51
75	lsoprostanoids quantitative profiling of marine red and brown macroalgae. Food Chemistry, 2018, 268, 452-462.	4.2	22
76	Biological activities of non-enzymatic oxygenated metabolites of polyunsaturated fatty acids (NEO-PUFAs) derived from EPA and DHA: New anti-arrhythmic compounds?. Molecular Aspects of Medicine, 2018, 64, 161-168.	2.7	18
77	Profiling of Omega-Polyunsaturated Fatty Acids and Their Oxidized Products in Salmon after Different Cooking Methods. Antioxidants, 2018, 7, 96.	2.2	41
78	Isoprostanoids in Clinical and Experimental Neurological Disease Models. Antioxidants, 2018, 7, 88.	2.2	14
79	Effects of Cyclic Fatty Acid Monomers from Heated Vegetable Oil on Markers of Inflammation and Oxidative Stress in Male Wistar Rats. Journal of Agricultural and Food Chemistry, 2018, 66, 7172-7180.	2.4	11
80	Snapshot situation of oxidative degradation of the nervous system, kidney, and adrenal glands biomarkers-neuroprostane and dihomo-isoprostanes-urinary biomarkers from infancy to elderly adults. Redox Biology, 2017, 11, 586-591.	3.9	14
81	Total Synthesis and in Vivo Quantitation of Phytofurans Derived from αâ€Linolenic Acid. European Journal of Organic Chemistry, 2017, 2017, 2486-2490.	1.2	17
82	Potential applications of lipid peroxidation products – F4-neuroprostanes, F3-neuroprostanesn-6 DPA, F2-dihomo-isoprostanes and F2-isoprostanes ―in the evaluation of the allograft function in renal transplantation. Free Radical Biology and Medicine, 2017, 104, 178-184.	1.3	10
83	Two sides of the same coin: NEOâ€PUFAs in Rett syndrome and postâ€infarction cardiac arrhythmias. European Journal of Lipid Science and Technology, 2017, 119, 1600320.	1.0	2
84	Impact of processing conditions on the phytoprostanes profile of three types of nut kernels. Free Radical Research, 2017, 51, 141-147.	1.5	24
85	Quantification of phytoprostanes – bioactive oxylipins – and phenolic compounds of Passiflora edulis Sims shell using UHPLC-QqQ-MS/MS and LC-IT-DAD-MS/MS. Food Chemistry, 2017, 229, 1-8.	4.2	63
86	Inhibition of α-glucosidase and α-amylase by Spanish extra virgin olive oils: The involvement of bioactive compounds other than oleuropein and hydroxytyrosol. Food Chemistry, 2017, 235, 298-307.	4.2	54
87	Short-time UVA exposure to human keratinocytes instigated polyunsaturated fatty acid without inducing lipid peroxidation. Free Radical Research, 2017, 51, 269-280.	1.5	12
88	Non-enzymatic oxidized metabolite of DHA, 4(RS)-4-F4t-neuroprostane protects the heart against reperfusion injury. Free Radical Biology and Medicine, 2017, 102, 229-239.	1.3	38
89	Melatonin and hydroxytyrosol protect against oxidative stress related to the central nervous system after the ingestion of three types of wine by healthy volunteers. Food and Function, 2017, 8, 64-74.	2.1	16
90	DHA-derived oxylipins, neuroprostanes and protectins, differentially and dose-dependently modulate the inflammatory response in human macrophages: Putative mechanisms through PPAR activation. Free Radical Biology and Medicine, 2017, 103, 146-154.	1.3	42

#	Article	lF	CITATIONS
91	Effect of the dietary intake of melatonin- and hydroxytyrosol-rich wines by healthy female volunteers on the systemic lipidomic-related oxylipins. Food and Function, 2017, 8, 3745-3757.	2.1	15
92	Novel free-radical mediated lipid peroxidation biomarkers in newborn plasma. Analytica Chimica Acta, 2017, 996, 88-97.	2.6	30
93	Isoprostanes, neuroprostanes and phytoprostanes: An overview of 25 years of research in chemistry and biology. Progress in Lipid Research, 2017, 68, 83-108.	5.3	130
94	Resveratrol formulated with a natural deep eutectic solvent inhibits active matrix metalloproteaseâ€9 in hormetic conditions. European Journal of Lipid Science and Technology, 2017, 119, 1700171.	1.0	25
95	Identification of an analgesic lipopeptide produced by the probiotic Escherichia coli strain Nissle 1917. Nature Communications, 2017, 8, 1314.	5.8	86
96	Effects of in Utero PFOS Exposure on Transcriptome, Lipidome, and Function of Mouse Testis. Environmental Science & Technology, 2017, 51, 8782-8794.	4.6	51
97	Valorization Strategy of Banana Passion Fruit Shell Wastes: An Innovative Source of Phytoprostanes and Phenolic Compounds and Their Potential Use in Pharmaceutical and Cosmetic Industries. Journal of Food and Nutrition Research (Newark, Del), 2017, 5, 801-808.	0.1	16
98	Extra Virgin Olive Oil Reduced Polyunsaturated Fatty Acid and Cholesterol Oxidation in Rodent Liver: Is This Accounted for Hydroxytyrosol-Fatty Acid Conjugation?. Chemical Research in Toxicology, 2016, 29, 1689-1698.	1.7	21
99	Assessment of Isoprostanes in Human Plasma: Technical Considerations and the Use of Mass Spectrometry. Lipids, 2016, 51, 1217-1229.	0.7	23
100	The novelty of phytofurans, isofurans, dihomo-isofurans and neurofurans: Discovery, synthesis and potential application. Biochimie, 2016, 130, 49-62.	1.3	33
101	Regiocontrolled syntheses of FAHFAs and LC-MS/MS differentiation of regioisomers. Organic and Biomolecular Chemistry, 2016, 14, 9012-9020.	1.5	42
102	Thermal Stress in Melon Plants: Phytoprostanes and Phytofurans as Oxidative Stress Biomarkers and the Effect of Antioxidant Supplementation. Journal of Agricultural and Food Chemistry, 2016, 64, 8296-8304.	2.4	47
103	Total Synthesis of the Isoketal 5â€D ₂ â€IsoK Natural Product Based on Organocatalysis. European Journal of Organic Chemistry, 2016, 2016, 5813-5816.	1.2	6
104	F ₂ -Isoprostanes in HDL are bound to neutral lipids and phospholipids. Free Radical Research, 2016, 50, 1374-1385.	1.5	8
105	Simultaneous quantitative profiling of 20 isoprostanoids from omega-3 and omega-6 polyunsaturated fatty acids by LC–MS/MS in various biological samples. Analytica Chimica Acta, 2016, 921, 46-58.	2.6	66
106	Dihydroxylated E,E,Z-docosatrienes. An overview of their synthesis and biological significance. Progress in Lipid Research, 2016, 61, 1-18.	5.3	40
107	Non-enzymatic cyclic oxygenated metabolites of omega-3 polyunsaturated fatty acid: Bioactive drugs?. Biochimie, 2016, 120, 56-61.	1.3	29
108	Omega-3 polyunsaturated lipophenols, how and why?. Biochimie, 2016, 120, 62-74.	1.3	46

#	Article	IF	CITATIONS
109	Phytoprostanes. Lipid Technology, 2015, 27, 127-130.	0.3	29
110	Nonenzymatic lipid mediators, neuroprostanes, exert the antiarrhythmic properties of docosahexaenoic acid. Free Radical Biology and Medicine, 2015, 86, 269-278.	1.3	59
111	Polymeric nanocapsules prevent oxidation of core-loaded molecules: evidence based on the effects of docosahexaenoic acid and neuroprostane on breast cancer cells proliferation. Journal of Experimental and Clinical Cancer Research, 2015, 34, 155.	3.5	30
112	Non-enzymatic cyclic oxygenated metabolites of adrenic, docosahexaenoic, eicosapentaenoic and α-linolenic acids; bioactivities and potential use as biomarkers. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 446-455.	1.2	51
113	New UHPLC–QqQ-MS/MS method for quantitative and qualitative determination of free phytoprostanes in foodstuffs of commercial olive and sunflower oils. Food Chemistry, 2015, 178, 212-220.	4.2	51
114	Dihomo-isoprostanes—nonenzymatic metabolites of AdA—are higher in epileptic patients compared to healthy individuals by a new ultrahigh pressure liquid chromatography–triple quadrupole–tandem mass spectrometry method. Free Radical Biology and Medicine, 2015, 79, 154-163.	1.3	33
115	Nonenzymatic α-Linolenic Acid Derivatives from the Sea: Macroalgae as Novel Sources of Phytoprostanes. Journal of Agricultural and Food Chemistry, 2015, 63, 6466-6474.	2.4	40
116	The phytoprostane content in green table olives is influenced by Spanish-style processing and regulated deficit irrigation. LWT - Food Science and Technology, 2015, 64, 997-1003.	2.5	34
117	Dependency of Phytoprostane Fingerprints of Must and Wine on Viticulture and Enological Processes. Journal of Agricultural and Food Chemistry, 2015, 63, 9022-9028.	2.4	26
118	Total Syntheses and In Vivo Quantitation of Novel Neurofuran and Dihomoâ€isofuran Derived from Docosahexaenoic Acid and Adrenic Acid. Chemistry - A European Journal, 2015, 21, 2442-2446.	1.7	39
119	Role of the Non-enzymatic Metabolite of Eicosapentaenoic Acid, 5-epi-5-F3t-Isoprostane in the Regulation of [3H]d-Aspartate Release in Isolated Bovine Retina. Neurochemical Research, 2014, 39, 2360-2369.	1.6	16
120	Oxygenated Metabolites of <i>n</i> â€3 Polyunsaturated Fatty Acids as Potential Oxidative Stress Biomarkers: Total Synthesis of 8â€F _{3t} â€IsoP, 10â€F _{4t} â€NeuroP and [D ₄]â€10â€F _{4t} â€NeuroP. Chemistry - A European Journal, 2014, 20, 6374-6380.	1.7	61
121	Synthesis, Discovery, and Quantitation of Dihomoâ€Isofurans: Biomarkers for In Vivo Adrenic Acid Peroxidation. Angewandte Chemie - International Edition, 2014, 53, 6249-6252.	7.2	44
122	Synthesis and Evaluation of Polyunsaturated Fatty Acid–Phenol Conjugates as Anti arbonyl‧tress Lipophenols. European Journal of Organic Chemistry, 2014, 2014, 4548-4561.	1.2	27
123	Nonenzymatic oxygenated metabolites of α-linolenic acid B1- and L1-phytoprostanes protect immature neurons from oxidant injury and promote differentiation of oligodendrocyte progenitors through PPAR-Î ³ activation. Free Radical Biology and Medicine, 2014, 73, 41-50.	1.3	64
124	Is There a Role for Isofurans and Neuroprostanes in Pre-Eclampsia and Normal Pregnancy?. Antioxidants and Redox Signaling, 2012, 16, 165-169.	2.5	27
125	Total Synthesis of Isoprostanes Derived from Adrenic Acid and EPA. European Journal of Organic Chemistry, 2012, 2012, 2621-2634.	1.2	27
126	Partial rescue of Rett syndrome by ω-3 polyunsaturated fatty acids (PUFAs) oil. Genes and Nutrition, 2012, 7, 447-458.	1.2	76

#	Article	IF	CITATIONS
127	F2-dihomo-isoprostanes as potential early biomarkers of lipid oxidative damage in Rett syndrome. Journal of Lipid Research, 2011, 52, 2287-2297.	2.0	93
128	Are Isofurans and Neuroprostanes Increased After Subarachnoid Hemorrhage and Traumatic Brain Injury?. Antioxidants and Redox Signaling, 2011, 15, 2663-2667.	2.5	38
129	Oxidative stress in Rett syndrome: Natural history, genotype, and variants. Redox Report, 2011, 16, 145-153.	1.4	64
130	Lipase-Catalyzed Regioselective Monoacetylation of Unsymmetrical 1,5-Primary Diols. Journal of Organic Chemistry, 2010, 75, 1892-1897.	1.7	33
131	Total Synthesis of 15-D2t- and 15-epi-15-E2t-Isoprostanes. Journal of Organic Chemistry, 2010, 75, 2411-2414.	1.7	20
132	A cautionary note on the correct structure assignment of phytoprostanes and the emergence of a new prostane ring system. Prostaglandins Leukotrienes and Essential Fatty Acids, 2010, 82, 83-86.	1.0	32
133	Total Synthesis of Photoactivatable or Fluorescent Anandamide Probes: Novel Bioactive Compounds with Angiogenic Activity. Journal of Medicinal Chemistry, 2009, 52, 1005-1017.	2.9	14
134	Beyond Prostaglandins—Chemistry and Biology of Cyclic Oxygenated Metabolites Formed by Freeâ€Radical Pathways from Polyunsaturated Fatty Acids. Angewandte Chemie - International Edition, 2008, 47, 5894-5955.	7.2	176
135	Stereocontrolled Access to Isoprostanes via a Bicyclo[3.3.0]octene Framework. Organic Letters, 2008, 10, 5087-5090.	2.4	81
136	Total Synthesis of the Four Enantiomerically Pure Diasteroisomers of the Phytoprostanes E ₁ Type II and of the 15-E _{2t} -Isoprostanes. Journal of Organic Chemistry, 2008, 73, 3063-3069.	1.7	51
137	Development of the First Potential Covalent Inhibitors of Anandamide Cellular Uptake. Journal of Medicinal Chemistry, 2006, 49, 2320-2332.	2.9	22
138	F2-Isoprostanes: Review of Analytical Methods. Current Pharmaceutical Analysis, 2006, 2, 69-78.	0.3	13
139	Synthesis of a photoactivatable probe of the anandamide re-uptake. Natural Product Research, 2005, 19, 419-423.	1.0	4
140	B1-Phytoprostanes Trigger Plant Defense and Detoxification Responses. Plant Physiology, 2005, 137, 328-340.	2.3	122
141	A Flexible Synthesis of the Phytoprostanes B1Type I and II. Journal of Organic Chemistry, 2005, 70, 989-997.	1.7	55
142	Total syntheses of iso-, neuro- and phytoprostanes: new insight in lipid chemistry. Chemistry and Physics of Lipids, 2004, 128, 15-33.	1.5	27
143	Total Synthesis of the Eight Diastereomers of the Syn-Anti-Syn Phytoprostanes F1 Types I and II. Journal of Organic Chemistry, 2004, 69, 2498-2503.	1.7	71
144	Total Synthesis of (15R)- and (15S)-F2t-Isoprostanes by a Biomimetic Process Using the Cyclization of Acyclic Dihydroxylated Octa-5,7-dienyl Radicals. Journal of Organic Chemistry, 2002, 67, 3615-3624.	1.7	37

#	Article	IF	CITATIONS
145	The 5-series F2 -isoprostanes possess no vasomotor effects in the rat thoracic aorta, the human internal mammary artery and the human saphenous vein. British Journal of Pharmacology, 2002, 135, 1276-1280.	2.7	24
146	Identification and Measurement of Endogenous β-Oxidation Metabolites of 8-epi-Prostaglandin F2α. Journal of Biological Chemistry, 1999, 274, 1313-1319.	1.6	88
147	Total synthesis of 15(RS)-5,6-dehydro-8-epi-PGF2α methyl ester by a biomimetic process. Tetrahedron Letters, 1997, 38, 1543-1546.	0.7	21
148	A free radical route to syn lactones and other prostanoid intermediates in isoprostaglandin synthesis Tetrahedron Letters, 1993, 34, 8245-8248.	0.7	42
149	Isoprostanoids, Isofuranoids and Isoketals – From Synthesis to Lipidomics. European Journal of Organic Chemistry, 0, , .	1.2	3
150	Straightforward Syntheses of Phytoprostanes and dihomoâ€Phytoprostanes â^' Nonâ€enzymatic Metabolites of γâ€Linolenic, dihomoâ€Î³â€Linolenic and Stearidonic acids. European Journal of Organic Chemistry, 0, , .	1.2	1