
Xiaoming Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5199498/publications.pdf Version: 2024-02-01

XIAOMING HU

#	Article	IF	CITATIONS
1	Microglia/Macrophage Polarization Dynamics Reveal Novel Mechanism of Injury Expansion After Focal Cerebral Ischemia. Stroke, 2012, 43, 3063-3070.	2.0	1,239
2	Microglial and macrophage polarization—new prospects for brain repair. Nature Reviews Neurology, 2015, 11, 56-64.	10.1	1,093
3	Microglia/Macrophage Polarization Dynamics in White Matter after Traumatic Brain Injury. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 1864-1874.	4.3	387
4	Rapid endothelial cytoskeletal reorganization enables early blood–brain barrier disruption and long-term ischaemic reperfusion brain injury. Nature Communications, 2016, 7, 10523.	12.8	309
5	HDAC inhibition prevents white matter injury by modulating microglia/macrophage polarization through the GSK31²/PTEN/Akt axis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2853-2858.	7.1	303
6	Interleukin-4 Is Essential for Microglia/Macrophage M2 Polarization and Long-Term Recovery After Cerebral Ischemia. Stroke, 2016, 47, 498-504.	2.0	300
7	Cerebral Vascular Disease and Neurovascular Injury in Ischemic Stroke. Circulation Research, 2017, 120, 449-471.	4.5	286
8	Adoptive regulatory Tâ€cell therapy protects against cerebral ischemia. Annals of Neurology, 2013, 74, 458-471.	5.3	246
9	Dysfunction of the neurovascular unit in ischemic stroke and neurodegenerative diseases: An aging effect. Ageing Research Reviews, 2017, 34, 77-87.	10.9	205
10	Aging of cerebral white matter. Ageing Research Reviews, 2017, 34, 64-76.	10.9	191
11	ST2/IL-33-Dependent Microglial Response Limits Acute Ischemic Brain Injury. Journal of Neuroscience, 2017, 37, 4692-4704.	3.6	169
12	Molecular dialogs between the ischemic brain and the peripheral immune system: Dualistic roles in injury and repair. Progress in Neurobiology, 2014, 115, 6-24.	5.7	168
13	Preconditioning provides neuroprotection in models of CNS disease: Paradigms and clinical significance. Progress in Neurobiology, 2014, 114, 58-83.	5.7	164
14	Treg cell-derived osteopontin promotes microglia-mediated white matter repair after ischemic stroke. Immunity, 2021, 54, 1527-1542.e8.	14.3	163
15	Peroxisome proliferator-activated receptor γ (PPARγ): A master gatekeeper in CNS injury and repair. Progress in Neurobiology, 2018, 163-164, 27-58.	5.7	156
16	White matter injury and microglia/macrophage polarization are strongly linked with age-related long-term deficits in neurological function after stroke. Experimental Neurology, 2015, 272, 109-119.	4.1	150
17	Regulatory T cells ameliorate tissue plasminogen activator-induced brain haemorrhage after stroke. Brain, 2017, 140, 1914-1931.	7.6	146
18	STAT6/Arg1 promotes microglia/macrophage efferocytosis and inflammation resolution in stroke mice. JCI Insight, 2019, 4, .	5.0	146

Χιαομινς Ηυ

#	Article	IF	CITATIONS
19	Peroxiredoxin-2 Protects against 6-Hydroxydopamine-Induced Dopaminergic Neurodegeneration via Attenuation of the Apoptosis Signal-Regulating Kinase (ASK1) Signaling Cascade. Journal of Neuroscience, 2011, 31, 247-261.	3.6	136
20	Functional Role of Regulatory Lymphocytes in Stroke. Stroke, 2015, 46, 1422-1430.	2.0	136
21	Rosiglitazone Promotes White Matter Integrity and Long-Term Functional Recovery After Focal Cerebral Ischemia. Stroke, 2015, 46, 2628-2636.	2.0	135
22	Pericytes in Brain Injury and Repair After Ischemic Stroke. Translational Stroke Research, 2017, 8, 107-121.	4.2	127
23	Endothelium-targeted overexpression of heat shock protein 27 ameliorates blood–brain barrier disruption after ischemic brain injury. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1243-E1252.	7.1	119
24	Demyelination as a rational therapeutic target for ischemic or traumatic brain injury. Experimental Neurology, 2015, 272, 17-25.	4.1	118
25	n-3 PUFA supplementation benefits microglial responses to myelin pathology. Scientific Reports, 2014, 4, 7458.	3.3	117
26	Neurotransmitter receptors on microglia. Stroke and Vascular Neurology, 2016, 1, 52-58.	3.3	116
27	Neurobiology of microglial action in CNS injuries: Receptor-mediated signaling mechanisms and functional roles. Progress in Neurobiology, 2014, 119-120, 60-84.	5.7	108
28	Functional Dynamics of Neutrophils After Ischemic Stroke. Translational Stroke Research, 2020, 11, 108-121.	4.2	108
29	Essential Role of Program Death 1-Ligand 1 in Regulatory T-Cell–Afforded Protection Against Blood–Brain Barrier Damage After Stroke. Stroke, 2014, 45, 857-864.	2.0	106
30	The interleukin-4/PPARÎ ³ signaling axis promotes oligodendrocyte differentiation and remyelination after brain injury. PLoS Biology, 2019, 17, e3000330.	5.6	95
31	IL-4/STAT6 signaling facilitates innate hematoma resolution and neurological recovery after hemorrhagic stroke in mice. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32679-32690.	7.1	93
32	Microglial/Macrophage polarization and function in brain injury and repair after stroke. CNS Neuroscience and Therapeutics, 2021, 27, 515-527.	3.9	91
33	<i>In Vivo</i> Expansion of Regulatory T Cells with IL-2/IL-2 Antibody Complex Protects against Transient Ischemic Stroke. Journal of Neuroscience, 2018, 38, 10168-10179.	3.6	85
34	Omega-3 polyunsaturated fatty acids enhance cerebral angiogenesis and provide long-term protection after stroke. Neurobiology of Disease, 2014, 68, 91-103.	4.4	78
35	A Post-stroke Therapeutic Regimen with Omega-3 Polyunsaturated Fatty Acids that Promotes White Matter Integrity and Beneficial Microglial Responses after Cerebral Ischemia. Translational Stroke Research, 2016, 7, 548-561.	4.2	70
36	Omega-3 polyunsaturated fatty acids mitigate blood–brain barrier disruption after hypoxic–ischemic brain injury. Neurobiology of Disease, 2016, 91, 37-46.	4.4	70

XIAOMING HU

#	Article	IF	CITATIONS
37	Diabetes Mellitus Impairs White Matter Repair and Long-Term Functional Deficits After Cerebral Ischemia. Stroke, 2018, 49, 2453-2463.	2.0	68
38	TGFα preserves oligodendrocyte lineage cells and improves white matter integrity after cerebral ischemia. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 639-655.	4.3	67
39	Post-stroke DHA Treatment Protects Against Acute Ischemic Brain Injury by Skewing Macrophage Polarity Toward the M2 Phenotype. Translational Stroke Research, 2018, 9, 669-680.	4.2	66
40	Câ€C Chemokine Receptor Type 5 (CCR5)â€Mediated Docking of Transferred Tregs Protects Against Early Bloodâ€Brain Barrier Disruption After Stroke. Journal of the American Heart Association, 2017, 6, .	3.7	65
41	<i>n</i> -3 Polyunsaturated Fatty Acids Reduce Neonatal Hypoxic/Ischemic Brain Injury by Promoting Phosphatidylserine Formation and Akt Signaling. Stroke, 2015, 46, 2943-2950.	2.0	58
42	Transforming Growth Factor Beta-Activated Kinase 1–Dependent Microglial and Macrophage Responses Aggravate Long-Term Outcomes After Ischemic Stroke. Stroke, 2020, 51, 975-985.	2.0	55
43	Tissue plasminogen activator promotes white matter integrity and functional recovery in a murine model of traumatic brain injury. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9230-E9238.	7.1	54
44	SIRP/CD47 signaling in neurological disorders. Brain Research, 2015, 1623, 74-80.	2.2	51
45	Dietary supplementation with omega-3 polyunsaturated fatty acids robustly promotes neurovascular restorative dynamics and improves neurological functions after stroke. Experimental Neurology, 2015, 272, 170-180.	4.1	44
46	APE1/Ref-1 facilitates recovery of gray and white matter and neurological function after mild stroke injury. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3558-67.	7.1	42
47	Genome-wide transcriptomic analysis of microglia reveals impaired responses in aged mice after cerebral ischemia. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, S49-S66.	4.3	41
48	Regulation of Neuroinflammation through Programed Death-1/Programed Death Ligand Signaling in Neurological Disorders. Frontiers in Cellular Neuroscience, 2014, 8, 271.	3.7	38
49	Phagocytic microglia and macrophages in brain injury and repair. CNS Neuroscience and Therapeutics, 2022, 28, 1279-1293.	3.9	38
50	Interleukin-4 improves white matter integrity and functional recovery after murine traumatic brain injury via oligodendroglial PPARÎ3. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 511-529.	4.3	37
51	Microglial Responses to Brain Injury and Disease: Functional Diversity and New Opportunities. Translational Stroke Research, 2021, 12, 474-495.	4.2	36
52	Severity-Dependent Long-Term Spatial Learning-Memory Impairment in a Mouse Model of Traumatic Brain Injury. Translational Stroke Research, 2016, 7, 512-520.	4.2	34
53	Promises and limitations of immune cell-based therapies in neurological disorders. Nature Reviews Neurology, 2018, 14, 559-568.	10.1	34
54	RNA sequencing reveals novel macrophage transcriptome favoring neurovascular plasticity after ischemic stroke. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 720-738.	4.3	33

XIAOMING HU

#	Article	IF	CITATIONS
55	Post-stroke administration of omega-3 polyunsaturated fatty acids promotes neurovascular restoration after ischemic stroke in mice: Efficacy declines with aging. Neurobiology of Disease, 2019, 126, 62-75.	4.4	31
56	Transcriptomic and functional studies reveal undermined chemotactic and angiostimulatory properties of aged microglia during stroke recovery. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, S81-S97.	4.3	29
57	Regulatory T Cell Therapy for Ischemic Stroke: how far from Clinical Translation?. Translational Stroke Research, 2016, 7, 415-419.	4.2	28
58	IL33 (Interleukin 33)/ST2 (Interleukin 1 Receptor-Like 1) Axis Drives Protective Microglial Responses and Promotes White Matter Integrity After Stroke. Stroke, 2021, 52, 2150-2161.	2.0	28
59	Focal cerebral ischemia activates neurovascular restorative dynamics in mouse brain. Frontiers in Bioscience - Elite, 2012, E4, 1926.	1.8	27
60	Microglia/macrophage polarization: Fantasy or evidence of functional diversity?. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, S134-S136.	4.3	25
61	Intranasal delivery of interleukin-4 attenuates chronic cognitive deficits via beneficial microglial responses in experimental traumatic brain injury. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 2870-2886.	4.3	21
62	Adiponectin ameliorates hypoperfusive cognitive deficits by boosting a neuroprotective microglial response. Progress in Neurobiology, 2021, 205, 102125.	5.7	20
63	Cancer Exacerbates Ischemic Brain Injury Via Nrp1 (Neuropilin 1)-Mediated Accumulation of Regulatory T Cells Within the Tumor. Stroke, 2018, 49, 2733-2742.	2.0	16
64	IL-33/ST2 Axis Protects Against Traumatic Brain Injury Through Enhancing the Function of Regulatory T Cells. Frontiers in Immunology, 2022, 13, 860772.	4.8	16
65	PRO: Regulatory T Cells Are Protective in Ischemic Stroke. Stroke, 2013, 44, e85-e86.	2.0	15
66	Microglia/macrophage diversities in central nervous system physiology and pathology. CNS Neuroscience and Therapeutics, 2019, 25, 1287-1289.	3.9	14
67	Delivery of Neurotherapeutics Across the Blood Brain Barrier in Stroke. Current Pharmaceutical Design, 2012, 18, 3704-3720.	1.9	10
68	Heat Shock Protein 70 as a Sex-Skewed Regulator of α-Synucleinopathy. Neurotherapeutics, 2021, 18, 2541-2564.	4.4	5
69	Hepatokine ERAP1 Disturbs Skeletal Muscle Insulin Sensitivity Via Inhibiting USP33-Mediated ADRB2 Deubiquitination. Diabetes, 2022, 71, 921-933.	0.6	5
70	InterCellDB: A Userâ€Defined Database for Inferring Intercellular Networks. Advanced Science, 2022, 9, .	11.2	5