Francisco GarcÃ-a-Labiano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5199266/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Progress in Chemical-Looping Combustion and Reforming technologies. Progress in Energy and Combustion Science, 2012, 38, 215-282.	31.2	1,865
2	Selection of Oxygen Carriers for Chemical-Looping Combustion. Energy & amp; Fuels, 2004, 18, 371-377.	5.1	646
3	Mapping of the range of operational conditions for Cu-, Fe-, and Ni-based oxygen carriers in chemical-looping combustion. Chemical Engineering Science, 2007, 62, 533-549.	3.8	546
4	Chemical looping combustion of solid fuels. Progress in Energy and Combustion Science, 2018, 65, 6-66.	31.2	433
5	Development of Cu-based oxygen carriers for chemical-looping combustion. Fuel, 2004, 83, 1749-1757.	6.4	335
6	llmenite Activation during Consecutive Redox Cycles in Chemical-Looping Combustion. Energy & Fuels, 2010, 24, 1402-1413.	5.1	277
7	Kinetics of redox reactions of ilmenite for chemical-looping combustion. Chemical Engineering Science, 2011, 66, 689-702.	3.8	274
8	Chemical Looping Combustion in a 10 kWth Prototype Using a CuO/Al2O3 Oxygen Carrier:  Effect of Operating Conditions on Methane Combustion. Industrial & Engineering Chemistry Research, 2006, 45, 6075-6080.	3.7	270
9	Operation of a 10kWth chemical-looping combustor during 200h with a CuO–Al2O3 oxygen carrier. Fuel, 2007, 86, 1036-1045.	6.4	261
10	Calcination of calcium-based sorbents at pressure in a broad range of CO2 concentrations. Chemical Engineering Science, 2002, 57, 2381-2393.	3.8	241
11	Demonstration of chemical-looping with oxygen uncoupling (CLOU) process in a 1.5kWth continuously operating unit using a Cu-based oxygen-carrier. International Journal of Greenhouse Gas Control, 2012, 6, 189-200.	4.6	234
12	Impregnated CuO/Al2O3Oxygen Carriers for Chemical-Looping Combustion:  Avoiding Fluidized Bed Agglomeration. Energy & Fuels, 2005, 19, 1850-1856.	5.1	226
13	Reduction Kinetics of Cu-, Ni-, and Fe-Based Oxygen Carriers Using Syngas (CO + H2) for Chemical-Looping Combustion. Energy & Fuels, 2007, 21, 1843-1853.	5.1	217
14	Effect of Pressure on the Behavior of Copper-, Iron-, and Nickel-Based Oxygen Carriers for Chemical-Looping Combustion. Energy & Fuels, 2006, 20, 26-33.	5.1	214
15	Reduction and Oxidation Kinetics of a Copper-Based Oxygen Carrier Prepared by Impregnation for Chemical-Looping Combustion. Industrial & Engineering Chemistry Research, 2004, 43, 8168-8177.	3.7	210
16	Behavior of ilmenite as oxygen carrier in chemical-looping combustion. Fuel Processing Technology, 2012, 94, 101-112.	7.2	210
17	Development of Cu-based oxygen carriers for Chemical-Looping with Oxygen Uncoupling (CLOU) process. Fuel, 2012, 96, 226-238.	6.4	198
18	Hydrogen production by chemical-looping reforming in a circulating fluidized bed reactor using Ni-based oxygen carriers. Journal of Power Sources, 2009, 192, 27-34.	7.8	171

Francisco GarcÃa-Labiano

#	Article	IF	CITATIONS
19	The use of ilmenite as oxygen-carrier in a 500Wth Chemical-Looping Coal Combustion unit. International Journal of Greenhouse Gas Control, 2011, 5, 1630-1642.	4.6	168
20	160h of chemical-looping combustion in a 10kW reactor system with a NiO-based oxygen carrier. International Journal of Greenhouse Gas Control, 2008, 2, 520-530.	4.6	166
21	Negative CO2 emissions through the use of biofuels in chemical looping technology: A review. Applied Energy, 2018, 232, 657-684.	10.1	166
22	Reduction and oxidation kinetics of nickel-based oxygen-carriers for chemical-looping combustion and chemical-looping reforming. Chemical Engineering Journal, 2012, 188, 142-154.	12.7	163
23	Effect of Fe–olivine on the tar content during biomass gasification in a dual fluidized bed. Applied Catalysis B: Environmental, 2012, 121-122, 214-222.	20.2	163
24	Effect of support on reactivity and selectivity of Ni-based oxygen carriers for chemical-looping combustion. Fuel, 2008, 87, 2641-2650.	6.4	152
25	Synthesis gas generation by chemical-looping reforming in a batch fluidized bed reactor using Ni-based oxygen carriers. Chemical Engineering Journal, 2008, 144, 289-298.	12.7	146
26	Chemical-looping combustion: Status and research needs. Proceedings of the Combustion Institute, 2019, 37, 4303-4317.	3.9	141
27	Chemical-looping combustion using syngas as fuel. International Journal of Greenhouse Gas Control, 2007, 1, 158-169.	4.6	139
28	Temperature variations in the oxygen carrier particles during their reduction and oxidation in a chemical-looping combustion system. Chemical Engineering Science, 2005, 60, 851-862.	3.8	138
29	Reduction and oxidation kinetics of Mn3O4/Mg–ZrO2 oxygen carrier particles for chemical-looping combustion. Chemical Engineering Science, 2007, 62, 6556-6567.	3.8	136
30	Methane Combustion in a 500 W _{th} Chemical-Looping Combustion System Using an Impregnated Ni-Based Oxygen Carrier. Energy & Fuels, 2009, 23, 130-142.	5.1	134
31	Biomass combustion with CO2 capture by chemical looping with oxygen uncoupling (CLOU). Fuel Processing Technology, 2014, 124, 104-114.	7.2	129
32	Modeling of the chemical-looping combustion of methane using a Cu-based oxygen-carrier. Combustion and Flame, 2010, 157, 602-615.	5.2	118
33	Hydrogen production by auto-thermal chemical-looping reforming in a pressurized fluidized bed reactor using Ni-based oxygen carriers. International Journal of Hydrogen Energy, 2010, 35, 151-160.	7.1	117
34	Syngas combustion in a 500ÂWth Chemical-Looping Combustion system using an impregnated Cu-based oxygen carrier. Fuel Processing Technology, 2009, 90, 1471-1479.	7.2	113
35	Evaluation of a Spray-Dried CuO/MgAl ₂ O ₄ Oxygen Carrier for the Chemical Looping with Oxygen Uncoupling Process. Energy & amp; Fuels, 2012, 26, 3069-3081.	5.1	111
36	Biomass combustion in a CLC system using an iron ore as an oxygen carrier. International Journal of Greenhouse Gas Control, 2013, 19, 322-330.	4.6	109

#	Article	IF	CITATIONS
37	NiO/Al2O3 oxygen carriers for chemical-looping combustion prepared by impregnation and deposition–precipitation methods. Fuel, 2009, 88, 1016-1023.	6.4	108
38	High temperature behaviour of a CuO/ \hat{I}^3 Al2O3 oxygen carrier for chemical-looping combustion. International Journal of Greenhouse Gas Control, 2011, 5, 659-667.	4.6	104
39	Fuel reactor modelling in chemical-looping combustion of coal: 1. model formulation. Chemical Engineering Science, 2013, 87, 277-293.	3.8	104
40	Kinetic determination of a highly reactive impregnated Fe2O3/Al2O3 oxygen carrier for use in gas-fueled Chemical Looping Combustion. Chemical Engineering Journal, 2014, 258, 265-280.	12.7	103
41	Nickelâ^²Copper Oxygen Carriers To Reach Zero CO and H2Emissions in Chemical-Looping Combustion. Industrial & Engineering Chemistry Research, 2006, 45, 2617-2625.	3.7	102
42	On the attrition evaluation of oxygen carriers in Chemical Looping Combustion. Fuel Processing Technology, 2016, 148, 188-197.	7.2	102
43	Optimization of hydrogen production by Chemical-Looping auto-thermal Reforming working with Ni-based oxygen-carriers. International Journal of Hydrogen Energy, 2011, 36, 9663-9672.	7.1	100
44	Effect of Fuel Gas Composition in Chemical-Looping Combustion with Ni-Based Oxygen Carriers. 1. Fate of Sulfur. Industrial & Engineering Chemistry Research, 2009, 48, 2499-2508.	3.7	99
45	Performance of a highly reactive impregnated Fe2O3/Al2O3 oxygen carrier with CH4 and H2S in a 500Wth CLC unit. Fuel, 2014, 121, 117-125.	6.4	99
46	Effect of gas composition in Chemical-Looping Combustion with copper-based oxygen carriers: Fate of sulphur. International Journal of Greenhouse Gas Control, 2010, 4, 762-770.	4.6	98
47	Effect of Support on the Behavior of Cu-Based Oxygen Carriers during Long-Term CLC Operation at Temperatures above 1073 K. Energy & Fuels, 2011, 25, 1316-1326.	5.1	97
48	Hydrogen production with CO2 capture by coupling steam reforming of methane and chemical-looping combustion: Use of an iron-based waste product as oxygen carrier burning a PSA tail gas. Journal of Power Sources, 2011, 196, 4370-4381.	7.8	97
49	Syngas combustion in a chemical-looping combustion system using an impregnated Ni-based oxygen carrier. Fuel, 2009, 88, 2357-2364.	6.4	96
50	Relevance of the coal rank on the performance of the in situ gasification chemical-looping combustion. Chemical Engineering Journal, 2012, 195-196, 91-102.	12.7	96
51	Kinetic analysis of a Cu-based oxygen carrier: Relevance of temperature and oxygen partial pressure on reduction and oxidation reactions rates in Chemical Looping with Oxygen Uncoupling (CLOU). Chemical Engineering Journal, 2014, 256, 69-84.	12.7	96
52	On the use of a highly reactive iron ore in Chemical Looping Combustion of different coals. Fuel, 2014, 126, 239-249.	6.4	95
53	Reaction Kinetics of Freeze-Granulated NiO/MgAl2O4Oxygen Carrier Particles for Chemical-Looping Combustion. Energy & amp; Fuels, 2007, 21, 610-618.	5.1	91
54	Catalytic Activity of Ni-Based Oxygen-Carriers for Steam Methane Reforming in Chemical-Looping Processes. Energy & Fuels, 2012, 26, 791-800.	5.1	89

#	Article	IF	CITATIONS
55	Reactivity of a NiO/Al2O3 oxygen carrier prepared by impregnation for chemical-looping combustion. Fuel, 2010, 89, 3399-3409.	6.4	88
56	Performance of CLOU process in the combustion of different types of coal with CO2 capture. International Journal of Greenhouse Gas Control, 2013, 12, 430-440.	4.6	88
57	Design and operation of a 50 kWth Chemical Looping Combustion (CLC) unit for solid fuels. Applied Energy, 2015, 157, 295-303.	10.1	85
58	Using continuous and pulse experiments to compare two promising nickel-based oxygen carriers for use in chemical-looping technologies. Fuel, 2008, 87, 988-1001.	6.4	84
59	Effect of operating conditions in Chemical-Looping Combustion of coal in a 500Wth unit. International Journal of Greenhouse Gas Control, 2012, 6, 153-163.	4.6	84
60	Biomass chemical looping gasification for syngas production using ilmenite as oxygen carrier in a 1.5 kWth unit. Chemical Engineering Journal, 2021, 405, 126679.	12.7	84
61	Low-Cost Fe-Based Oxygen Carrier Materials for the <i>i</i> G-CLC Process with Coal. 1. Industrial & amp; Engineering Chemistry Research, 2012, 51, 16216-16229.	3.7	77
62	Assessment of technological solutions for improving chemical looping combustion of solid fuels with CO2 capture. Chemical Engineering Journal, 2013, 233, 56-69.	12.7	76
63	Circulating fluidised bed co-combustion of coal and biomass. Fuel, 2004, 83, 277-286.	6.4	75
64	Use of an Fe-Based Residue from Alumina Production as an Oxygen Carrier in Chemical-Looping Combustion. Energy & Fuels, 2012, 26, 1420-1431.	5.1	73
65	Development of CuO-based oxygen-carrier materials suitable for Chemical-Looping with Oxygen Uncoupling (CLOU) process. Energy Procedia, 2011, 4, 417-424.	1.8	72
66	Chemical Looping Combustion of different types of biomass in a 0.5 kWth unit. Fuel, 2018, 211, 868-875.	6.4	72
67	Identification of operational regions in the Chemical-Looping with Oxygen Uncoupling (CLOU) process with a Cu-based oxygen carrier. Fuel, 2012, 102, 634-645.	6.4	70
68	Reduction and Oxidation Kinetics of a CaMn _{0.9} Mg _{0.1} O _{3â~'Î} Oxygen Carrier for Chemical-Looping Combustion. Industrial & Engineering Chemistry Research, 2014, 53, 87-103.	3.7	70
69	Prompt considerations on the design of Chemical-Looping Combustion of coal from experimental tests. Fuel, 2012, 97, 219-232.	6.4	69
70	Coal combustion in a 50kWth Chemical Looping Combustion unit: Seeking operating conditions to maximize CO2 capture and combustion efficiency. International Journal of Greenhouse Gas Control, 2016, 50, 80-92.	4.6	69
71	Characterization and Performance in a Multicycle Test in a Fixed-Bed Reactor of Silica-Supported Copper Oxide as Oxygen Carrier for Chemical-Looping Combustion of Methane. Energy & Fuels, 2006, 20, 148-154.	5.1	68
72	Testing of a highly reactive impregnated Fe2O3/Al2O3 oxygen carrier for a SR–CLC system in a continuous CLC unit. Fuel Processing Technology, 2012, 96, 37-47.	7.2	67

Francisco GarcÃa-Labiano

#	Article	IF	CITATIONS
73	Evaluation of the use of different coals in Chemical Looping Combustion using a bauxite waste as oxygen carrier. Fuel, 2013, 106, 814-826.	6.4	67
74	Fuel reactor modelling in chemical-looping combustion of coal: 2—simulation and optimization. Chemical Engineering Science, 2013, 87, 173-182.	3.8	67
75	The fate of sulphur in the Cu-based Chemical Looping with Oxygen Uncoupling (CLOU) Process. Applied Energy, 2014, 113, 1855-1862.	10.1	66
76	Investigation of Combined Supports for Cu-Based Oxygen Carriers for Chemical-Looping with Oxygen Uncoupling (CLOU). Energy & Fuels, 2013, 27, 3918-3927.	5.1	65
77	Release of pollutant components in CLC of lignite. International Journal of Greenhouse Gas Control, 2014, 22, 15-24.	4.6	65
78	Biomass Chemical Looping Gasification of pine wood using a synthetic Fe2O3/Al2O3 oxygen carrier in a continuous unit. Bioresource Technology, 2020, 316, 123908.	9.6	65
79	Determination of sulfur release and its kinetics in rapid pyrolysis of coal. Fuel, 1995, 74, 1072-1079.	6.4	64
80	Behaviour of a bauxite waste material as oxygen carrier in a 500Wth CLC unit with coal. International Journal of Greenhouse Gas Control, 2013, 17, 170-182.	4.6	64
81	Performance of Cu- and Fe-based oxygen carriers in a 500 W th CLC unit for sour gas combustion with high H 2 S content. International Journal of Greenhouse Gas Control, 2014, 28, 168-179.	4.6	64
82	Calcium-based sorbents behaviour during sulphation at oxy-fuel fluidised bed combustion conditions. Fuel, 2011, 90, 3100-3108.	6.4	63
83	Determination of Biomass Char Combustion Reactivities for FBC Applications by a Combined Method. Industrial & Engineering Chemistry Research, 2001, 40, 4317-4323.	3.7	62
84	Performance of a bauxite waste as oxygen-carrier for chemical-looping combustion using coal as fuel. Fuel Processing Technology, 2013, 109, 57-69.	7.2	62
85	Pollutant emissions in a bubbling fluidized bed combustor working in oxy-fuel operating conditions: Effect of flue gas recirculation. Applied Energy, 2013, 102, 860-867.	10.1	61
86	Redox kinetics of CaMg0.1Ti0.125Mn0.775O2.9â^'δ for Chemical Looping Combustion (CLC) and Chemical Looping with Oxygen Uncoupling (CLOU). Chemical Engineering Journal, 2015, 269, 67-81.	12.7	61
87	Conceptual design of a 100 MWth CLC unit for solid fuel combustion. Applied Energy, 2015, 157, 462-474.	10.1	61
88	Chemical Looping Combustion of gaseous and solid fuels with manganese-iron mixed oxide as oxygen carrier. Energy Conversion and Management, 2018, 159, 221-231.	9.2	61
89	Chemical looping combustion of biomass: CLOU experiments with a Cu-Mn mixed oxide. Fuel Processing Technology, 2018, 172, 179-186.	7.2	61
90	Long-lasting Cu-based oxygen carrier material for industrial scale in Chemical Looping Combustion. International Journal of Greenhouse Gas Control, 2016, 52, 120-129.	4.6	60

#	Article	IF	CITATIONS
91	Influence of Limestone Addition in a 10 kW _{th} Chemical-Looping Combustion Unit Operated with Petcoke. Energy & Fuels, 2011, 25, 4818-4828.	5.1	59
92	Theoretical approach on the CLC performance with solid fuels: Optimizing the solids inventory. Fuel, 2012, 97, 536-551.	6.4	59
93	Fuel reactor model validation: Assessment of the key parameters affecting the chemical-looping combustion of coal. International Journal of Greenhouse Gas Control, 2013, 19, 541-551.	4.6	59
94	Axial voidage profiles in fast fluidized beds. Powder Technology, 1994, 81, 259-268.	4.2	58
95	Characterization Study and Five-Cycle Tests in a Fixed-Bed Reactor of Titania-Supported Nickel Oxide as Oxygen Carriers for the Chemical-Looping Combustion of Methane. Environmental Science & Technology, 2005, 39, 5796-5803.	10.0	57
96	Titanium substituted manganese-ferrite as an oxygen carrier with permanent magnetic properties for chemical looping combustion of solid fuels. Fuel, 2017, 195, 38-48.	6.4	56
97	Sulphur, nitrogen and mercury emissions from coal combustion with CO2 capture in chemical looping with oxygen uncoupling (CLOU). International Journal of Greenhouse Gas Control, 2016, 46, 28-38.	4.6	55
98	Effect of Operating Conditions and H ₂ S Presence on the Performance of CaMg _{0.1} Mn _{0.9} O _{3â~î´} Perovskite Material in Chemical Looping Combustion (CLC). Energy & Fuels, 2014, 28, 1262-1274.	5.1	54
99	NO and N 2 O emissions in oxy-fuel combustion of coal in a bubbling fluidized bed combustor. Fuel, 2015, 150, 146-153.	6.4	54
100	Evaluation of Manganese Minerals for Chemical Looping Combustion. Energy & Fuels, 2015, 29, 6605-6615.	5.1	54
101	Optimum temperature for sulphur retention in fluidised beds working under oxy-fuel combustion conditions. Fuel, 2013, 114, 106-113.	6.4	53
102	Calcination of calcium acetate and calcium magnesium acetate: effect of the reacting atmosphere. Fuel, 1999, 78, 583-592.	6.4	51
103	Study of modified calcium hydroxides for enhancing SO2 removal during sorbent injection in pulverized coal boilers. Fuel, 1997, 76, 257-265.	6.4	50
104	Effect of H2S on the behaviour of an impregnated NiO-based oxygen-carrier for chemical-looping combustion (CLC). Applied Catalysis B: Environmental, 2012, 126, 186-199.	20.2	50
105	Process Comparison for Biomass Combustion: Inâ€Situ Gasificationâ€Chemical Looping Combustion (iGâ€CLC) versus Chemical Looping with Oxygen Uncoupling (CLOU). Energy Technology, 2016, 4, 1130-1136.	3.8	50
106	Modeling of the Devolatilization of Nonspherical Wet Pine Wood Particles in Fluidized Beds. Industrial & Engineering Chemistry Research, 2002, 41, 3642-3650.	3.7	49
107	Characterization of a sol–gel derived CuO/CuAl2O4 oxygen carrier for chemical looping combustion (CLC) of gaseous fuels: Relevance of gas–solid and oxygen uncoupling reactions. Fuel Processing Technology, 2015, 133, 210-219.	7.2	49
108	Performance of a low-cost iron ore as an oxygen carrier for Chemical Looping Combustion of gaseous fuels. Chemical Engineering Research and Design, 2015, 93, 736-746.	5.6	49

#	Article	IF	CITATIONS
109	Effect of gas composition in Chemical-Looping Combustion with copper-based oxygen carriers: Fate of light hydrocarbons. International Journal of Greenhouse Gas Control, 2010, 4, 13-22.	4.6	46
110	Synthesis gas generation by chemical-looping reforming using a Nibased oxygen carrier. Energy Procedia, 2009, 1, 3-10.	1.8	45
111	In situ gasification Chemical-Looping Combustion of coal using limestone as oxygen carrier precursor and sulphur sorbent. Chemical Engineering Journal, 2017, 310, 226-239.	12.7	45
112	Characterization of a limestone in a batch fluidized bed reactor for sulfur retention under oxy-fuel operating conditions. International Journal of Greenhouse Gas Control, 2011, 5, 1190-1198.	4.6	44
113	Use of chemically and physically mixed iron and nickel oxides as oxygen carriers for gas combustion in a CLC process. Fuel Processing Technology, 2013, 115, 152-163.	7.2	44
114	Mn-based oxygen carriers prepared by impregnation for Chemical Looping Combustion with diverse fuels. Fuel Processing Technology, 2018, 178, 236-250.	7.2	44
115	Effect of Fuel Gas Composition in Chemical-Looping Combustion with Ni-Based Oxygen Carriers. 2. Fate of Light Hydrocarbons. Industrial & amp; Engineering Chemistry Research, 2009, 48, 2509-2518.	3.7	43
116	Reduction and oxidation kinetics of Tierga iron ore for Chemical Looping Combustion with diverse fuels. Chemical Engineering Journal, 2019, 359, 37-46.	12.7	42
117	Use of Chemical-Looping processes for coal combustion with CO2 capture. Energy Procedia, 2013, 37, 540-549.	1.8	41
118	Development of (Mn0.77Fe0.23)2O3 particles as an oxygen carrier for coal combustion with CO2 capture via in-situ gasification chemical looping combustion (iG-CLC) aided by oxygen uncoupling (CLOU). Fuel Processing Technology, 2017, 164, 69-79.	7.2	41
119	Tar abatement for clean syngas production during biomass gasification in a dual fluidized bed. Fuel Processing Technology, 2016, 152, 116-123.	7.2	40
120	Performance in a Fixed-Bed Reactor of Titania-Supported Nickel Oxide as Oxygen Carriers for the Chemical-Looping Combustion of Methane in Multicycle Tests. Industrial & Engineering Chemistry Research, 2006, 45, 157-165.	3.7	39
121	Biomass chemical looping gasification for syngas production using LD Slag as oxygen carrier in a 1.5 kWth unit. Fuel Processing Technology, 2021, 222, 106963.	7.2	39
122	llmenite as oxygen carrier in a chemical looping combustion system with coal. Energy Procedia, 2011, 4, 362-369.	1.8	38
123	Manganese Minerals as Oxygen Carriers for Chemical Looping Combustion of Coal. Industrial & Engineering Chemistry Research, 2016, 55, 6539-6546.	3.7	38
124	Solid Waste Management of a Chemical-Looping Combustion Plant using Cu-Based Oxygen Carriers. Environmental Science & Technology, 2007, 41, 5882-5887.	10.0	37
125	On a Highly Reactive Fe ₂ O ₃ /Al ₂ O ₃ Oxygen Carrier for <i>i>in Situ</i> Gasification Chemical Looping Combustion. Energy & Fuels, 2014, 28, 7043-7052.	5.1	37
126	Syngas/H2 production from bioethanol in a continuous chemical-looping reforming prototype. Fuel Processing Technology, 2015, 137, 24-30.	7.2	36

#	Article	IF	CITATIONS
127	Sulphuric acid production via Chemical Looping Combustion of elemental sulphur. Applied Energy, 2016, 178, 736-745.	10.1	36
128	Relevance of the catalytic activity on the performance of a NiO/CaAl2O4 oxygen carrier in a CLC process. Applied Catalysis B: Environmental, 2014, 147, 980-987.	20.2	35
129	Optimization of H2 production with CO2 capture by steam reforming of methane integrated with a chemical-looping combustion system. International Journal of Hydrogen Energy, 2013, 38, 11878-11892.	7.1	34
130	Mercury Release and Speciation in Chemical Looping Combustion of Coal. Energy & Fuels, 2014, 28, 2786-2794.	5.1	34
131	Comparison of Mechanistic Models for the Sulfation Reaction in a Broad Range of Particle Sizes of Sorbents. Industrial & Engineering Chemistry Research, 1996, 35, 2190-2197.	3.7	33
132	Combustion of Wood Chips in a CFBC. Modeling and Validation. Industrial & Engineering Chemistry Research, 2003, 42, 987-999.	3.7	33
133	Low-Cost Fe-Based Oxygen Carrier Materials for the <i>i</i> G-CLC Process with Coal. 2. Industrial & amp; Engineering Chemistry Research, 2012, 51, 16230-16241.	3.7	33
134	CLOU process performance with a Cu-Mn oxygen carrier in the combustion of different types of coal with CO2 capture. Fuel, 2018, 212, 605-612.	6.4	33
135	Coal combustion via Chemical Looping assisted by Oxygen Uncoupling with a manganese‑iron mixed oxide doped with titanium. Fuel Processing Technology, 2020, 197, 106184.	7.2	33
136	Modelling for the high-temperature sulphation of calcium-based sorbents with cylindrical and plate-like pore geometries. Chemical Engineering Science, 2000, 55, 3665-3683.	3.8	32
137	Tar abatement in a fixed bed catalytic filter candle during biomass gasification in a dual fluidized bed. Applied Catalysis B: Environmental, 2016, 188, 198-206.	20.2	32
138	Optimization of hydrogen production with CO2 capture by autothermal chemical-looping reforming using different bioethanol purities. Applied Energy, 2016, 169, 491-498.	10.1	32
139	Chemical Looping Combustion of liquid fossil fuels in a 1 kW th unit using a Fe-based oxygen carrier. Fuel Processing Technology, 2017, 160, 47-54.	7.2	32
140	Energy exploitation of acid gas with high H2S content by means of a chemical looping combustion system. Applied Energy, 2014, 136, 242-249.	10.1	31
141	Comparative study of fuel-N and tar evolution in chemical looping combustion of biomass under both iG-CLC and CLOU modes. Fuel, 2019, 236, 598-607.	6.4	31
142	Effect of pore geometry on the sintering of Ca-based sorbents during calcination at high temperatures. Fuel, 2004, 83, 1733-1742.	6.4	30
143	Design and Operation of a Coal-fired 50 kWth Chemical Looping Combustor. Energy Procedia, 2014, 63, 63-72.	1.8	30
144	Increasing energy efficiency in chemical looping combustion of methane by in-situ activation of perovskite-based oxygen carriers. Applied Energy, 2021, 287, 116557.	10.1	30

Francisco GarcÃa-Labiano

#	Article	IF	CITATIONS
145	Optimization of synthesis gas production in the biomass chemical looping gasification process operating under auto-thermal conditions. Energy, 2021, 226, 120317.	8.8	30
146	Syngas Production in a 1.5 kW _{th} Biomass Chemical Looping Gasification Unit Using Fe and Mn Ores as the Oxygen Carrier. Energy & Fuels, 2021, 35, 17182-17196.	5.1	30
147	Effects of Temperature and Flue Gas Recycle on the SO2 and NOx Emissions in an Oxy-fuel Fluidized Bed Combustor. Energy Procedia, 2013, 37, 1275-1282.	1.8	29
148	Autothermal chemical looping reforming process of different fossil liquid fuels. International Journal of Hydrogen Energy, 2017, 42, 13633-13640.	7.1	29
149	On the optimization of physical and chemical stability of a Cu/Al2O3 impregnated oxygen carrier for chemical looping combustion. Fuel Processing Technology, 2021, 215, 106740.	7.2	28
150	Sulfur retention in an oxy-fuel bubbling fluidized bed combustor: Effect of coal rank, type of sorbent and O 2 /CO 2 ratio. Fuel, 2014, 137, 384-392.	6.4	27
151	Assessment of the improvement of chemical looping combustion of coal by using a manganese ore as oxygen carrier. Fuel Processing Technology, 2018, 176, 107-118.	7.2	27
152	Performance Evaluation of a Cu-Based Oxygen Carrier Impregnated onto ZrO ₂ for Chemical-Looping Combustion (CLC). Industrial & Engineering Chemistry Research, 2020, 59, 7255-7266.	3.7	27
153	Use of Hopcalite-Derived Cu–Mn Mixed Oxide as Oxygen Carrier for Chemical Looping with Oxygen Uncoupling Process. Energy & Fuels, 2016, 30, 5953-5963.	5.1	26
154	Bioethanol combustion with CO2 capture in a 1kWth Chemical Looping Combustion prototype: Suitability of the oxygen carrier. Chemical Engineering Journal, 2016, 283, 1405-1413.	12.7	26
155	Steam, dry, and steam-dry chemical looping reforming of diesel fuel in a 1 kW th unit. Chemical Engineering Journal, 2017, 325, 369-377.	12.7	26
156	Comparative Evaluation of the Performance of Coal Combustion in 0.5 and 50 kWth Chemical Looping Combustion Units with Ilmenite, Redmud or Iron Ore as Oxygen Carrier. Energy Procedia, 2017, 114, 285-301.	1.8	26
157	Development and validation of a 1D process model with autothermal operation of a 1â€ ⁻ MW th chemical looping pilot plant. International Journal of Greenhouse Gas Control, 2018, 73, 29-41.	4.6	26
158	Production of hydrogen by chemical looping reforming of methane and biogas using a reactive and durable Cu-based oxygen carrier. Fuel, 2022, 322, 124250.	6.4	26
159	Chemical-Looping Combustion of Kerosene and Gaseous Fuels with a Natural and a Manufactured Mn–Fe-Based Oxygen Carrier. Energy & Fuels, 2018, 32, 8803-8816.	5.1	25
160	Residual activity of sorbent particles with a long residence time in a CFBC. AICHE Journal, 2000, 46, 1888-1893.	3.6	24
161	Simultaneous Calcination and Sulfidation of Calcium-Based Sorbents. Industrial & Engineering Chemistry Research, 2004, 43, 3261-3269.	3.7	24
162	Spray granulated Cu-Mn oxygen carrier for chemical looping with oxygen uncoupling (CLOU) process. International Journal of Greenhouse Gas Control, 2017, 65, 76-85.	4.6	24

#	Article	IF	CITATIONS
163	Kinetics of H2S Reaction with Calcined Calcium-Based Sorbents. Energy & amp; Fuels, 1998, 12, 617-625.	5.1	23
164	Modeling of Limestone Sulfation for Typical Oxy-Fuel Fluidized Bed Combustion Conditions. Energy & Fuels, 2013, 27, 2266-2274.	5.1	23
165	Characterization for disposal of Fe-based oxygen carriers from a CLC unit burning coal. Fuel Processing Technology, 2015, 138, 750-757.	7.2	23
166	Coal combustion with a spray granulated Cu-Mn mixed oxide for the Chemical Looping with Oxygen Uncoupling (CLOU) process. Applied Energy, 2017, 208, 561-570.	10.1	23
167	Assessment of low-cost oxygen carrier in South-western Colombia, and its use in the in-situ gasification chemical looping combustion technology. Fuel, 2018, 218, 417-424.	6.4	23
168	Relevance of plant design on CLC process performance using a Cu-based oxygen carrier. Fuel Processing Technology, 2018, 171, 78-88.	7.2	23
169	Kinetics of CaMn0.775Ti0.125Mg0.1O2.9-l´ perovskite prepared at industrial scale and its implication on the performance of chemical looping combustion of methane. Chemical Engineering Journal, 2020, 394, 124863.	12.7	23
170	Development of a magnetic Cu-based oxygen carrier for the chemical looping with oxygen uncoupling (CLOU) process. Fuel Processing Technology, 2021, 218, 106836.	7.2	23
171	Factors Affecting the H2S Reaction with Noncalcined Limestones and Half-Calcined Dolomites. Energy & Fuels, 1999, 13, 146-153.	5.1	22
172	Coupled drying and devolatilisation of non-spherical wet pine wood particles in fluidised beds. Journal of Analytical and Applied Pyrolysis, 2002, 65, 173-184.	5.5	22
173	Hot Coal-Gas Desulfurization with Calcium-Based Sorbents in a Pressurized Moving-Bed Reactor. Energy & Fuels, 2004, 18, 1543-1554.	5.1	22
174	Performance of a low Ni content oxygen carrier for fuel gas combustion in a continuous CLC unit using a CaO/Al2O3 system as support. International Journal of Greenhouse Gas Control, 2013, 14, 209-219.	4.6	22
175	Chemical Looping Combustion of Biomass: An Approach to BECCS. Energy Procedia, 2017, 114, 6021-6029.	1.8	22
176	Life cycle assessment of natural gas fuelled power plants based on chemical looping combustion technology. Energy Conversion and Management, 2019, 198, 111856.	9.2	22
177	Utilization of Calcium Acetate and Calcium Magnesium Acetate for H2S Removal in Coal Gas Cleaning at High Temperatures. Energy & Fuels, 1999, 13, 440-448.	5.1	21
178	Thermochemical assessment of chemical looping assisted by oxygen uncoupling with a MnFe-based oxygen carrier. Applied Energy, 2019, 251, 113340.	10.1	20
179	Modeling of moving-bed coal gasifiers. Industrial & Engineering Chemistry Research, 1990, 29, 2079-2088.	3.7	19
180	Sulfur release during the devolatilization of large coal particles. Fuel, 1996, 75, 585-590.	6.4	19

#	Article	IF	CITATIONS
181	Effect of Moisture Content on Devolatilization Times of Pine Wood Particles in a Fluidized Bed. Energy & Fuels, 2003, 17, 285-290.	5.1	19
182	Effect of Pressure on the Sulfidation of Calcined Calcium-Based Sorbents. Energy & Fuels, 2004, 18, 761-769.	5.1	19
183	Effect of gas impurities on the behavior of Ni-based oxygen carriers on chemical-looping combustion. Energy Procedia, 2009, 1, 11-18.	1.8	19
184	H2S Removal in Entrained Flow Reactors by Injection of Ca-Based Sorbents at High Temperatures. Energy & Fuels, 1998, 12, 726-733.	5.1	18
185	The fate of mercury in fluidized beds under oxy-fuel combustion conditions. Fuel, 2016, 167, 75-81.	6.4	18
186	Evaluation of different strategies to improve the efficiency of coal conversion in a 50ÅkWth Chemical Looping combustion unit. Fuel, 2020, 271, 117514.	6.4	18
187	Progress of Sulfation in Highly Sulfated Particles of Lime. Industrial & Engineering Chemistry Research, 2003, 42, 1840-1844.	3.7	17
188	A simple model for comparative evaluation of different oxygen carriers and solid fuels in iG-CLC processes. Fuel Processing Technology, 2018, 179, 444-454.	7.2	17
189	Improving the oxygen demand in biomass CLC using manganese ores. Fuel, 2020, 274, 117803.	6.4	17
190	Promising Impregnated Mn-based Oxygen Carriers for Chemical Looping Combustion of Gaseous Fuels. Energy Procedia, 2017, 114, 334-343.	1.8	16
191	Mercury capture by a structured Au/C regenerable sorbent under oxycoal combustion representative and real conditions. Fuel, 2017, 207, 821-829.	6.4	16
192	Development of Oxygen Carriers for Chemical-Looping Combustion. , 2005, , 587-604.		16
193	Effect of the Fe content on the behavior of synthetic oxygen carriers in a 1.5ÂkW biomass chemical looping gasification unit. Fuel, 2022, 309, 122193.	6.4	16
194	Effectiveness of Natural, Commercial, and Modified Calcium-Based Sorbents as H2S Removal Agents at High Temperatures. Environmental Science & Technology, 1999, 33, 288-293.	10.0	15
195	Combustion and Reforming of Liquid Fossil Fuels through Chemical Looping Processes: Integration of Chemical Looping Processes in a Refinery. Energy Procedia, 2017, 114, 325-333.	1.8	15
196	Evaluation of the redox capability of manganese‑titanium mixed oxides for thermochemical energy storage and chemical looping processes. Fuel Processing Technology, 2021, 211, 106579.	7.2	15
197	Chemical looping with oxygen uncoupling: an advanced biomass combustion technology to avoid CO2 emissions. Mitigation and Adaptation Strategies for Global Change, 2019, 24, 1293-1306.	2.1	14

Optimizing the Fuel Reactor for Chemical Looping Combustion. , 2003, , 173.

#	Article	IF	CITATIONS
199	HS retention with Ca-based sorbents in a pressurized fixed-bed reactor: application to moving-bed design. Fuel, 2005, 84, 533-542.	6.4	13
200	Cu-Mn oxygen carrier with improved mechanical resistance: Analyzing performance under CLC and CLOU environments. Fuel Processing Technology, 2021, 217, 106819.	7.2	13
201	Qualification of operating conditions to extend oxygen carrier utilization in the scaling up of chemical looping processes. Chemical Engineering Journal, 2022, 430, 132602.	12.7	13
202	Modelling Chemical-Looping assisted by Oxygen Uncoupling (CLaOU): Assessment of natural gas combustion with calcium manganite as oxygen carrier. Proceedings of the Combustion Institute, 2019, 37, 4361-4369.	3.9	12
203	The effect of the porous structure on sorbent sulfation under coal-fired boiler conditions. Thermochimica Acta, 1996, 277, 151-164.	2.7	11
204	Combustion and Reforming of Ethanol in a Chemical Looping Continuous Unit. Energy Procedia, 2014, 63, 53-62.	1.8	11
205	Improving the efficiency of Chemical Looping Combustion with coal by using ring-type internals in the fuel reactor. Fuel, 2019, 250, 8-16.	6.4	11
206	Use of bio-glycerol for the production of synthesis gas by chemical looping reforming. Fuel, 2021, 288, 119578.	6.4	11
207	Life cycle assessment of power-to-methane systems with CO2 supplied by the chemical looping combustion of biomass. Energy Conversion and Management, 2022, 267, 115866.	9.2	11
208	Factors affecting the thermogravimetric technique in the characterization of sorbents for AFBC. Thermochimica Acta, 1993, 217, 99-113.	2.7	10
209	Regeneration of Sulfided Dolomite with Steam and Carbon Dioxide. Energy & amp; Fuels, 2001, 15, 85-94.	5.1	10
210	Direct Sulfidation of Half-Calcined Dolomite under Pressurized Conditions. Industrial & Engineering Chemistry Research, 2004, 43, 4132-4139.	3.7	10
211	Modeling of the chemical-looping combustion of methane using a Cu-based oxygen carrier. Energy Procedia, 2009, 1, 391-398.	1.8	10
212	Morphological analysis of sulfated Ca-based sorbents under conditions corresponding to oxy-fuel fluidized bed combustion. Fuel, 2015, 162, 264-270.	6.4	10
213	Behavior of a manganese-iron mixed oxide doped with titanium in reducing the oxygen demand for CLC of biomass. Fuel, 2021, 292, 120381.	6.4	10
214	Synthesis gas and H2 production by chemical looping reforming using bio-oil from fast pyrolysis of wood as raw material. Chemical Engineering Journal, 2022, 431, 133376.	12.7	10
215	Coal and biomass combustion with CO2 capture by CLOU process using a magnetic Fe-Mn-supported CuO oxygen carrier. Fuel, 2022, 314, 122742.	6.4	10
216	Novel magnetic manganese-iron materials for separation of solids used in high-temperature processes: Application to oxygen carriers for chemical looping combustion. Fuel, 2022, 320, 123901.	6.4	10

#	Article	IF	CITATIONS
217	Influence of an Oxygen Carrier on the CH ₄ Reforming Reaction Linked to the Biomass Chemical Looping Gasification Process. Energy & Fuels, 2022, 36, 9460-9469.	5.1	10
218	Extension and evaluation of a macroscopic model for syngas-fueled chemical looping combustion. Chemical Engineering and Processing: Process Intensification, 2018, 133, 106-116.	3.6	9
219	Air jet attrition measurements at hot conditions of oxygen carriers for chemical looping combustion. Powder Technology, 2021, 392, 661-671.	4.2	9
220	Characterization of the reactivity of limestones with SO ₂ in a fluidized bed reactor. Canadian Journal of Chemical Engineering, 1992, 70, 734-741.	1.7	8
221	Sulfur retention in AFBC. Modelling and sorbent characterization methods. Fuel Processing Technology, 1993, 36, 73-79.	7.2	7
222	Mercury emissions from coal combustion in fluidized beds under oxy-fuel and air conditions: Influence of coal characteristics and O2 concentration. Fuel Processing Technology, 2017, 167, 695-701.	7.2	6
223	Evaluation of (MnxFe1-x)2TiyOz Particles as Oxygen Carrier for Chemical Looping Combustion. Energy Procedia, 2017, 114, 302-308.	1.8	6
224	Effect of the Presence of Siloxanes in Biogas Chemical Looping Combustion. Energy & Fuels, 2021, 35, 14984-14994.	5.1	6
225	Carbon efficiency in atmospheric fluidized bed combustion of lignites. Fuel, 1992, 71, 417-424.	6.4	5
226	Sulphur retention in circulating fluidized bed coal combustion. Modelling and simulation. Coal Science and Technology, 1995, 24, 1839-1842.	0.0	5
227	Iron-based oxygen carrier particles produced from micronized size minerals or industrial wastes. Powder Technology, 2022, 396, 637-647.	4.2	5
228	CFD Modelling of the Fuel Reactor of a Chemical Loping Combustion Plant to Be Used with Biomethane. Processes, 2022, 10, 588.	2.8	5
229	Modeling of lignite combustion in atmospheric fluidized bed combustors. 2. Model validation and simulation. Industrial & Engineering Chemistry Research, 1992, 31, 2296-2303.	3.7	4
230	Optimization of a chemical-looping auto-thermal reforming system working with a Ni-based oxygen-carrier. Energy Procedia, 2011, 4, 425-432.	1.8	4
231	Evaluation of a highly reactive and sulfur resistant synthetic Fe-based oxygen carrier for CLC using gaseous fuels. Energy Procedia, 2013, 37, 580-587.	1.8	4
232	Co-Combustion of Biomass and Coal in Circulating Fluidized Bed: Modeling and Validation. , 2003, , .		4
233	Evaluation of oxygen carriers based on manganese‑iron mixed oxides prepared from natural ores or industrial waste products for chemical looping processes. Fuel Processing Technology, 2022, 234, 107313.	7.2	4
234	Ca-based sorbents as precursors of oxygen carriers in chemical looping combustion of sulfurous fuels. Fuel, 2022, 312, 122743.	6.4	3

#	Article	IF	CITATIONS
235	Modeling of sulphur retention in atmospheric fluidized bed combustors. Sensitivity analysis and simulation. Chemical Engineering and Technology, 1995, 18, 229-242.	1.5	1
236	Sorbent characterization for boiler injection process. Coal Science and Technology, 1995, , 1819-1822.	0.0	0
237	Author's response to the comments by M. Hartman and O. Trnka. Chemical Engineering Science, 2003, 58, 3301.	3.8	0
238	Operational Experience of Biomass Combustion Using Chemical Looping Processes. , 0, , .		0
239	Chemical Looping Combustion of Biomass: Clou Experiments with a Cu-Mn Mixed Oxide. , 0, , .		0