
Roberto Paolucci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5199222/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The older the better? The strange case of empirical ground motion models in the near-source of moderate-to-large magnitude earthquakes. Bulletin of Earthquake Engineering, 2022, 20, 1325-1342.	4.1	1
2	Selection and spectral matching of recorded ground motions for seismic fragility analyses. Bulletin of Earthquake Engineering, 2022, 20, 4961-4987.	4.1	29
3	Earthquake ground motion modeling of induced seismicity in the Groningen gas field. Earthquake Engineering and Structural Dynamics, 2021, 50, 135-154.	4.4	15
4	Physicsâ€based probabilistic seismic hazard and loss assessment in large urban areas: A simplified application to Istanbul. Earthquake Engineering and Structural Dynamics, 2021, 50, 99-115.	4.4	27
5	Checking the site categorization criteria and amplification factors of the 2021 draft of Eurocode 8 Part 1–1. Bulletin of Earthquake Engineering, 2021, 19, 4199-4234.	4.1	37
6	BB-SPEEDset: A Validated Dataset of Broadband Near-Source Earthquake Ground Motions from 3D Physics-Based Numerical Simulations. Bulletin of the Seismological Society of America, 2021, 111, 2527-2545.	2.3	26
7	3D Physics-Based Numerical Simulations of Ground Motion in Istanbul from Earthquakes along the Marmara Segment of the North Anatolian Fault. Bulletin of the Seismological Society of America, 2020, 110, 2559-2576.	2.3	29
8	Database of rocking shallow foundation performance: Slow-cyclic and monotonic loading. Earthquake Spectra, 2020, 36, 1585-1606.	3.1	14
9	Three-dimensional physics-based earthquake ground motion simulations for seismic risk assessment in densely populated urban areas. Mathematics in Engineering, 2020, 3, 1-31.	0.9	13
10	Fling Effects from Nearâ€Source Strongâ€Motion Records: Insights from the 2016 MwÂ6.5 Norcia, Central Italy, Earthquake. Seismological Research Letters, 2019, 90, 659-671.	1.9	18
11	Comment on "Broadband Groundâ€Motion Simulation of the 2011 MwÂ6.2 Christchurch, New Zealand, Earthquake―by H. N. T. Razafindrakoto, B. A. Bradley, and R. W. Graves. Bulletin of the Seismological Society of America, 2019, 109, 2138-2138.	2.3	3
12	3D Physics-Based Numerical Simulations: Advantages and Current Limitations of a New Frontier to Earthquake Ground Motion Prediction. The Istanbul Case Study. Geotechnical, Geological and Earthquake Engineering, 2018, , 203-223.	0.2	10
13	Identification of the nonlinear seismic response of buildings by a combined Stockwell Transform and deconvolution interferometry approach. Bulletin of Earthquake Engineering, 2018, 16, 3103-3126.	4.1	11
14	Joint deconvolution of building and downhole seismic recordings: an application to three test cases. Bulletin of Earthquake Engineering, 2018, 16, 613-641.	4.1	11
15	Near-source effects and non-linear site response at Kashiwazaki-Kariwa Nuclear Power Plant, in the 2007 Chuetsu-Oki earthquake: evidence from surface and downhole records and 1D numerical simulations. Bulletin of Earthquake Engineering, 2018, 16, 1105-1135.	4.1	5
16	Empirical evaluation of peak ground velocity and displacement as a function of elastic spectral ordinates for design. Earthquake Engineering and Structural Dynamics, 2018, 47, 245-255.	4.4	11
17	Broadband Ground Motions from 3D Physicsâ€Based Numerical Simulations Using Artificial Neural Networks. Bulletin of the Seismological Society of America, 2018, 108, 1272-1286.	2.3	57
18	Numerical modeling of seismic waves by discontinuous spectral element methods. ESAIM Proceedings and Surveys, 2018, 61, 1-37.	0.4	22

ROBERTO PAOLUCCI

#	Article	IF	CITATIONS
19	Physics-based seismic input for engineering applications: a case study in the Aterno river valley, Central Italy. Bulletin of Earthquake Engineering, 2017, 15, 2645-2671.	4.1	35
20	Numerical modeling of the interaction of pressurized large diameter gas buried pipelines with normal fault ruptures. Soil Dynamics and Earthquake Engineering, 2017, 101, 105-115.	3.8	16
21	The 3D numerical simulation of near-source ground motion during the Marsica earthquake, central Italy, 100 years later. Soil Dynamics and Earthquake Engineering, 2016, 91, 39-52.	3.8	26
22	Numerical study on basin-edge effects in the seismic response of the Gubbio valley, Central Italy. Bulletin of Earthquake Engineering, 2016, 14, 1437-1459.	4.1	17
23	Evaluation of Probabilistic Siteâ€Specific Seismicâ€Hazard Methods and Associated Uncertainties, with Applications in the Po Plain, Northern Italy. Bulletin of the Seismological Society of America, 2015, 105, 2787-2807.	2.3	35
24	Ground Motion Record Selection Based on Broadband Spectral Compatibility. Earthquake Spectra, 2014, 30, 1427-1448.	3.1	136
25	Direct displacement-based assessment with nonlinear soil–structure interaction for multi-span reinforced concrete bridges. Structure and Infrastructure Engineering, 2014, 10, 1211-1227.	3.7	16
26	The role of non-linear dynamic soil-foundation interaction on the seismic response of structures. Bulletin of Earthquake Engineering, 2014, 12, 1157-1176.	4.1	48
27	Introducing Dynamic Nonlinear Soil-Foundation-Structure Interaction Effects in Displacement-Based Seismic Design. Earthquake Spectra, 2013, 29, 475-496.	3.1	33
28	Modelling basin effects on earthquake ground motion in the Santiago de Chile basin by a spectral element code. Geophysical Journal International, 2011, 187, 929-945.	2.4	36
29	Seismic analysis of deep tunnels in near fault conditions: a case study in Southern Italy. Bulletin of Earthquake Engineering, 2011, 9, 975-995.	4.1	71
30	Identification of accelerometric stations in ITACA with distinctive features in their seismic response. Bulletin of Earthquake Engineering, 2011, 9, 1921-1939.	4.1	12
31	Comparison of 3D, 2D and 1D numerical approaches to predict long period earthquake ground motion in the Gubbio plain, Central Italy. Bulletin of Earthquake Engineering, 2011, 9, 2007-2029.	4.1	54
32	Italian strong motion records in ITACA: overview and record processing. Bulletin of Earthquake Engineering, 2011, 9, 1741-1759.	4.1	52
33	Engineering ground motion record selection in the ITalian ACcelerometric Archive. Bulletin of Earthquake Engineering, 2011, 9, 1761-1778.	4.1	43
34	Overview of the Italian strong motion database ITACA 1.0. Bulletin of Earthquake Engineering, 2011, 9, 1723-1739.	4.1	115
35	Foreword to the special issue on the ITACA strong motion database. Bulletin of Earthquake Engineering, 2011, 9, 1717-1721.	4.1	0
36	Earthquake induced ground strains in the presence of strong lateral soil heterogeneities. Bulletin of Earthquake Engineering, 2010, 8, 1527-1546.	4.1	11

Roberto Paolucci

#	Article	IF	CITATIONS
37	Recorded Motions of the 6 April 2009 M _w 6.3 L'Aquila, Italy, Earthquake and Implications for Building Structural Damage: Overview. Earthquake Spectra, 2010, 26, 651-684.	3.1	71
38	Simplified modelling of continous buried pipelines subject to earthquake fault rupture. Earthquake and Structures, 2010, 1, 253-267.	1.0	23
39	Site Effects at Long Periods from Digital Strong Motion Records of the KiK-net, Japan. Journal of Earthquake Engineering, 2009, 13, 567-584.	2.5	5
40	Experimental and Numerical Results on Earthquake-Induced Rotational Ground Motions. Journal of Earthquake Engineering, 2009, 13, 66-82.	2.5	14
41	Seismic behaviour of shallow foundations: Shaking table experiments <i>vs</i> numerical modelling. Earthquake Engineering and Structural Dynamics, 2008, 37, 577-595.	4.4	121
42	On the reliability of long-period response spectral ordinates from digital accelerograms. Earthquake Engineering and Structural Dynamics, 2008, 37, 697-710.	4.4	37
43	Earthquake-induced Transient Ground Strains from Dense Seismic Networks. Earthquake Spectra, 2008, 24, 453-470.	3.1	33
44	Near-fault earthquake ground motion prediction by a high-performance spectral element numerical code. AIP Conference Proceedings, 2008, , .	0.4	0
45	Large-Scale Experiments on Nonlinear Behavior of Shallow Foundations Subjected to Strong Earthquakes. Soils and Foundations, 2008, 48, 673-692.	3.1	66
46	Seismic Risk Assessment of Underground Structures under Transient Ground Deformations. , 2007, , 433-459.		19
47	Earthquake fault rupture—shallow foundation interaction in undrained soils: a simplified analytical approach. Earthquake Engineering and Structural Dynamics, 2007, 36, 101-118.	4.4	29
48	Ground Motion Induced by Train Passage. Journal of Engineering Mechanics - ASCE, 2006, 132, 201-210.	2.9	15
49	Displacement Spectra for Long Periods. Earthquake Spectra, 2004, 20, 347-376.	3.1	128
50	Comparative Study of the Seismic Hazard Assessments in European National Seismic Codes. Bulletin of Earthquake Engineering, 2004, 2, 51-73.	4.1	22
51	Simplified vibratory characterization of alluvial basins. Comptes Rendus - Geoscience, 2003, 335, 365-370.	1.2	11
52	Amplification of earthquake ground motion by steep topographic irregularities. Earthquake Engineering and Structural Dynamics, 2002, 31, 1831-1853.	4.4	176
53	Title is missing!. Journal of Seismology, 2002, 6, 307-327.	1.3	6
54	Assessment of Seismic Site Effects in 2-D Alluvial Valleys Using Neural Networks. Earthquake Spectra, 2000, 16, 661-680.	3.1	17

Roberto Paolucci

#	Article	IF	CITATIONS
55	Shear Resonance Frequencies of Alluvial Valleys by Rayleigh's Method. Earthquake Spectra, 1999, 15, 503-521.	3.1	46
56	3D Response analysis of an instrumented hill at Matsuzaki, Japan, by a spectral method. Journal of Seismology, 1999, 3, 191-209.	1.3	71
57	Numerical evaluation of the effect of cross-coupling of different components of ground motion in site response analyses. Bulletin of the Seismological Society of America, 1999, 89, 877-887.	2.3	17
58	Seismic Bearing Capacity of Shallow Strip Foundations on Dry Soils. Soils and Foundations, 1997, 37, 95-105.	3.1	105
59	Soil inertia effects on the bearing capacity of rectangular foundations on cohesive soils. Engineering Structures, 1997, 19, 637-643.	5.3	18