
Daniel Osorio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5199017/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Colour discrimination thresholds vary throughout colour space in a reef fish (<i>Rhinecanthus) Tj ETQq1 1 0.784</i>	4314 rgBT 0.8	Oyerlock 10
2	Multi-level control of adaptive camouflage by European cuttlefish. Current Biology, 2022, 32, 2556-2562.e2.	1.8	12
3	Colourfulness as a possible measure of object proximity in the larval zebrafish brain. Current Biology, 2021, 31, R235-R236.	1.8	15
4	Visual perception and camouflage response to 3D backgrounds and cast shadows in the European cuttlefish, <i>Sepia officinalis</i> . Journal of Experimental Biology, 2021, 224, .	0.8	11
5	What is primate color vision for? a comment on Caro et al Behavioral Ecology, 2021, 32, 571-572.	1.0	1
6	Does conspicuousness scale linearly with colour distance? A test using reef fish. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201456.	1.2	26
7	The retinal basis of vision in chicken. Seminars in Cell and Developmental Biology, 2020, 106, 106-115.	2.3	28
8	The astonishing diversity of vision: Introduction to an issue of Vision Research on animal vision. Vision Research, 2020, 172, 62-63.	0.7	0
9	The evolutionary ecology of bird and reptile photoreceptor spectral sensitivities. Current Opinion in Behavioral Sciences, 2019, 30, 223-227.	2.0	7
10	Prospective severity classification of scientific procedures in cephalopods: Report of a COST FA1301 Working Group survey. Laboratory Animals, 2019, 53, 541-563.	0.5	16
11	Object colours, material properties and animal signals. Journal of Experimental Biology, 2019, 222, .	0.8	8
12	The Retinal Basis of Vertebrate Color Vision. Annual Review of Vision Science, 2019, 5, 177-200.	2.3	86
13	Animal Coloration Patterns: Linking Spatial Vision to Quantitative Analysis. American Naturalist, 2019, 193, 164-186.	1.0	38
14	Principles and application of the receptor noise model of color discrimination: a comment on Olsson et al Behavioral Ecology, 2018, 29, 283-284.	1.0	9
15	Zebrafish Differentially Process Color across Visual Space to Match Natural Scenes. Current Biology, 2018, 28, 2018-2032.e5.	1.8	161
16	The Importance of Spatial Visual Scene Parameters in Predicting Optimal Cone Sensitivities in Routinely Trichromatic Frugivorous Old-World Primates. Frontiers in Computational Neuroscience, 2018, 12, 15.	1.2	3
17	Coevolution of coloration and colour vision?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160338.	1.8	41
18	Cuttlefish. Current Biology, 2017, 27, R1093-R1095.	1.8	1

#	Article	IF	CITATIONS
19	The biology of color. Science, 2017, 357, .	6.0	509
20	Ultraviolet and yellow reflectance but not fluorescence is important for visual discrimination of conspecifics by <i>Heliconius erato</i> . Journal of Experimental Biology, 2017, 220, 1267-1276.	0.8	47
21	Modelling fish colour constancy, and the implications for vision and signalling in water. Journal of Experimental Biology, 2016, 219, 1884-92.	0.8	27
22	Determination of Photoreceptor Cell Spectral Sensitivity in an Insect Model from In Vivo Intracellular Recordings. Journal of Visualized Experiments, 2016, , 53829.	0.2	11
23	Sexual dimorphism in the compound eye of <i>Heliconius erato</i> : a nymphalid butterfly with at least five spectral classes of photoreceptor. Journal of Experimental Biology, 2016, 219, 2377-87.	0.8	57
24	Cuttlefish see shape from shading, fine-tuning coloration in response to pictorial depth cues and directional illumination. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160062.	1.2	13
25	The challenge of objective scar colour assessment in a clinical setting: using digital photography. Journal of Wound Care, 2015, 24, 379-387.	0.5	6
26	Guidelines for the Care and Welfare of Cephalopods in Research –A consensus based on an initiative by CephRes, FELASA and the Boyd Group. Laboratory Animals, 2015, 49, 1-90.	0.5	262
27	Leaf Colour as a Signal of Chemical Defence to Insect Herbivores in Wild Cabbage (Brassica oleracea). PLoS ONE, 2015, 10, e0136884.	1.1	17
28	Cephalopods in neuroscience: regulations, research and the 3Rs. Invertebrate Neuroscience, 2014, 14, 13-36.	1.8	142
29	Extraordinary Color Vision. Science, 2014, 343, 381-382.	6.0	4
30	Cephalopod Behaviour: Skin Flicks. Current Biology, 2014, 24, R684-R685.	1.8	9
31	The identification and management of pain, suffering and distress in cephalopods, including anaesthesia, analgesia and humane killing. Journal of Experimental Marine Biology and Ecology, 2013, 447, 46-64.	0.7	140
32	Visual contrast and color in rapid learning of novel patterns by chicks. Journal of Experimental Biology, 2013, 216, 4184-9.	0.8	14
33	Symmetry perception by poultry chicks and its implications for three-dimensional object recognition. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 841-846.	1.2	15
34	UV Photoreceptors and UV-Yellow Wing Pigments in <i>Heliconius</i> Butterflies Allow a Color Signal to Serve both Mimicry and Intraspecific Communication. American Naturalist, 2012, 179, 38-51.	1.0	98
35	Effect of colour vision status on insect prey capture efficiency of captive and wild tamarins (Saguinus spp.). Animal Behaviour, 2012, 83, 479-486.	0.8	48
36	To Be Seen or to Hide: Visual Characteristics of Body Patterns for Camouflage and Communication in the Australian Giant Cuttlefish <i>Sepia apama</i> . American Naturalist, 2011, 177, 681-690.	1.0	61

#	Article	IF	CITATIONS
37	What can camouflage tell us about non-human visual perception? A case study of multiple cue use in cuttlefish (<i>Sepia</i> spp.). , 2011, , 164-185.		6
38	Light sense. Nature, 2011, 472, 300-301.	13.7	1
39	Dramatic colour changes in a bird of paradise caused by uniquely structured breast feather barbules. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 2098-2104.	1.2	109
40	From spectral information to animal colour vision: experiments and concepts. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 1617-1625.	1.2	161
41	A foraging advantage for dichromatic marmosets (<i>Callithrix geoffroyi</i>) at low light intensity. Biology Letters, 2010, 6, 36-38.	1.0	60
42	Edge detection and texture classification by cuttlefish. Journal of Vision, 2009, 9, 13-13.	0.1	25
43	Light during embryonic development modulates patterns of lateralization strongly and similarly in both zebrafish and chick. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 983-989.	1.8	52
44	Perception of edges and visual texture in the camouflage of the common cuttlefish, <i>Sepia officinalis</i> . Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 439-448.	1.8	65
45	Cuttlefish camouflage: context-dependent body pattern use during motion. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 3963-3969.	1.2	53
46	Short article: Sensory generalization and learning about novel colours by poultry chicks. Quarterly Journal of Experimental Psychology, 2009, 62, 1249-1256.	0.6	9
47	Color Generalization by Birds. , 2009, , 129-146.		3
48	A review of the evolution of animal colour vision and visual communication signals. Vision Research, 2008, 48, 2042-2051.	0.7	329
49	The effects of longitudinal chromatic aberration and a shift in the peak of the middle-wavelength sensitive cone fundamental on cone contrast. Vision Research, 2008, 48, 1929-1939.	0.7	28
50	Vision in Birds. , 2008, , 25-52.		49
51	A review of cuttlefish camouflage and object recognition and evidence for depth perception. Journal of Experimental Biology, 2008, 211, 1757-1763.	0.8	51
52	Cognitive Dimensions of Predator Responses to Imperfect Mimicry. PLoS Biology, 2007, 5, e339.	2.6	95
53	Generalization of Color by Chickens: Experimental Observations and a Bayesian Model. American Naturalist, 2007, 169, S27-S41.	1.0	19
54	Perception of visual texture and the expression of disruptive camouflage by the cuttlefish, Sepia officinalis. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 1369-1375.	1.2	72

#	Article	IF	CITATIONS
55	Colour preferences and colour vision in poultry chicks. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 1941-1948.	1.2	58
56	Morphology and Ornamentation in Male Magnificent Frigatebirds: Variation with Age Class and Mating Status. American Naturalist, 2007, 169, S93-S111.	1.0	25
57	Perspectives on Primate Color Vision. , 2007, , 805-819.		4
58	Cognitive dimensions of predator responses to imperfect mimicry?. Nature Precedings, 2007, , .	0.1	0
59	Spam and the evolution of the fly's eye. BioEssays, 2007, 29, 111-115.	1.2	27
60	Testing the phenotypic gambit: phenotypic, genetic and environmental correlations of colour. Journal of Evolutionary Biology, 2007, 20, 549-557.	0.8	129
61	Selective signalling by cuttlefish to predators. Current Biology, 2007, 17, R1044-R1045.	1.8	96
62	The Ecology of the Primate Eye: Retinal Sampling and Color Vision. , 2006, , 99-126.		3
63	Juvenile plaice (Pleuronectes platessa) produce camouflage by flexibly combining two separate patterns. Journal of Experimental Biology, 2006, 209, 3288-3292.	0.8	51
64	Cuttlefish responses to visual orientation of substrates, water flow and a model of motion camouflage. Journal of Experimental Biology, 2006, 209, 4717-4723.	0.8	44
65	Photoreceptor sectral sensitivities in terrestrial animals: adaptations for luminance and colour vision. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 1745-1752.	1.2	334
66	Detection of Fruit and the Selection of Primate Visual Pigments for Color Vision. American Naturalist, 2004, 164, 696-708.	1.0	182
67	Visual Pigments: Trading Noise for Fast Recovery. Current Biology, 2004, 14, R1051-R1053.	1.8	12
68	Effect of polymorphic colour vision for fruit detection in the spider monkey Ateles geoffroyi, and its implications for the maintenance of polymorphic colour vision in platyrrhine monkeys. Journal of Experimental Biology, 2004, 207, 2465-2470.	0.8	43
69	Colour vision in the glow-worm Lampyris noctiluca (L.)(Coleoptera: Lampyridae): evidence for a green-blue chromatic mechanism. Journal of Experimental Biology, 2004, 207, 2373-2378.	0.8	45
70	Discrimination of oriented visual textures by poultry chicks. Vision Research, 2004, 44, 83-89.	0.7	119
71	Animal colour vision–Âbehavioural tests and physiological concepts. Biological Reviews, 2003, 78, 81-118.	4.7	731
72	EVOLUTION AND FUNCTION OF ROUTINE TRICHROMATIC VISION IN PRIMATES. Evolution; International Journal of Organic Evolution, 2003, 57, 2636-2643.	1.1	127

#	Article	IF	CITATIONS
73	The effect of colour vision status on the detection and selection of fruits by tamarins (Saguinus spp.). Journal of Experimental Biology, 2003, 206, 3159-3165.	0.8	145
74	Evolution and selection of trichromatic vision in primates. Trends in Ecology and Evolution, 2003, 18, 198-205.	4.2	311
75	EVOLUTION AND FUNCTION OF ROUTINE TRICHROMATIC VISION IN PRIMATES. Evolution; International Journal of Organic Evolution, 2003, 57, 2636.	1.1	10
76	Modular organization of adaptive colouration in flounder and cuttlefish revealed by independent component analysis. Network: Computation in Neural Systems, 2003, 14, 321-333.	2.2	23
77	Dietary analysis I: Food physics. , 2003, , 184-198.		26
78	Modular organization of adaptive colouration in flounder and cuttlefish revealed by independent component analysis. Network: Computation in Neural Systems, 2003, 14, 321-33.	2.2	4
79	Identifying the structure in cuttlefish visual signals. Philosophical Transactions of the Royal Society B: Biological Sciences, 2002, 357, 1617-1624.	1.8	29
80	The effects of the visual environment on responses to colour by domestic chicks. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2002, 188, 135-140.	0.7	51
81	Spectral reflectance and directional properties of structural coloration in bird plumage. Journal of Experimental Biology, 2002, 205, 2017-2027.	0.8	152
82	Spectral reflectance and directional properties of structural coloration in bird plumage. Journal of Experimental Biology, 2002, 205, 2017-27.	0.8	119
83	Colour generalisation by domestic chicks. Behavioral and Brain Sciences, 2001, 24, 654-654.	0.4	7
84	The sensory ecology of primate food perception. Evolutionary Anthropology, 2001, 10, 171-186.	1.7	184
85	Colourful objects through animal eyes. Color Research and Application, 2001, 26, S214-S217.	0.8	61
86	Colour categorization by domestic chicks. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 2077-2084.	1.2	51
87	Field Kit to Characterize Physical, Chemical and Spatial Aspects of Potential Primate Foods. Folia Primatologica, 2001, 72, 11-25.	0.3	132
88	Colourful objects through animal eyes. Color Research and Application, 2001, 26, S214-S217.	0.8	13
89	Color signals in natural scenes: characteristics of reflectance spectra and effects of natural illuminants. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2000, 17, 218.	0.8	104
90	Characterization of natural illuminants in forests and the use of digital video data to reconstruct illuminant spectra. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2000, 17, 1713.	0.8	41

#	Article	IF	CITATIONS
91	Spectral tuning of dichromats to natural scenes. Vision Research, 2000, 40, 3257-3271.	0.7	67
92	Visual Ecology and Perception of Coloration Patterns by Domestic Chicks. Evolutionary Ecology, 1999, 13, 673-689.	0.5	186
93	Accurate memory for colour but not pattern contrast in chicks. Current Biology, 1999, 9, 199-202.	1.8	91
94	Colour vision of domestic chicks. Journal of Experimental Biology, 1999, 202, 2951-2959.	0.8	214
95	Colour vision of domestic chicks. Journal of Experimental Biology, 1999, 202, 2951-9.	0.8	158
96	Tetrachromacy, oil droplets and bird plumage colours. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1998, 183, 621-633.	0.7	639
97	Receptor noise as a determinant of colour thresholds. Proceedings of the Royal Society B: Biological Sciences, 1998, 265, 351-358.	1.2	1,071
98	Estimation of errors in luminance signals encoded by primate retina resulting from sampling of natural images with red and green cones. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1998, 15, 16.	0.8	40
99	Homology and parallelism in arthropod sensory processing. , 1998, , 333-347.		31
100	Stomatopod photoreceptor spectral tuning as an adaptation for colour constancy in water. Vision Research, 1997, 37, 3299-3309.	0.7	54
101	Sepia tones, stomatopod signals and the uses of colour. Trends in Ecology and Evolution, 1997, 12, 167-168.	4.2	10
102	Colour vision as an adaptation to frugivory in primates. Proceedings of the Royal Society B: Biological Sciences, 1996, 263, 593-599.	1.2	342
103	Reply from D. Osorio et al Trends in Ecology and Evolution, 1996, 11, 253.	4.2	2
104	Characterisation of columnar neurons and visual signal processing in the medulla of the locust optic lobe by system identification techniques. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1996, 178, 183-99.	0.7	36
105	Spectral responses and chromatic processing in the dragonfly lamina. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1996, 178, 543.	0.7	15
106	Arthropod evolution: great brains, beautiful bodies. Trends in Ecology and Evolution, 1995, 10, 449-454.	4.2	66
107	A good eye for arthropod evolution. BioEssays, 1994, 16, 419-424.	1.2	50
108	Eye evolution: Darwin's shudder stilled. Trends in Ecology and Evolution, 1994, 9, 241-242.	4.2	13

#	Article	IF	CITATIONS
109	The tuning of human photopigments may minimize red—green chromatic signals in natural conditions. Proceedings of the Royal Society B: Biological Sciences, 1993, 252, 209-213.	1.2	41
110	Local feedback mediated via amacrine cells in the insect optic lobe. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1992, 171, 447.	0.7	20
111	Human cone-pigment spectral sensitivities and the reflectances of natural surfaces. Biological Cybernetics, 1992, 67, 217-222.	0.6	144
112	Camouflage by edge enhancement in animal coloration patterns and its implications for visual mechanisms. Proceedings of the Royal Society B: Biological Sciences, 1991, 244, 81-85.	1.2	71
113	Spectral sensitivities of photoreceptors and lamina monopolar cells in the dragonfly, Hemicordulia tau. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1991, 169, 663.	0.7	43
114	Mechanisms of early visual processing in the medulla of the locust optic lobe: How self-inhibition, spatial-pooling, and signal rectification contribute to the properties of transient cells. Visual Neuroscience, 1991, 7, 345-355.	0.5	50
115	Shift of edge-taxis to scototaxis depends on mean luminance and is predicted by a matched filter theory on the responses of fly lamina LMC cells. Visual Neuroscience, 1990, 4, 579-584.	0.5	4
116	What causes edge fixation in walking flies?. Journal of Experimental Biology, 1990, 149, 281-292.	0.8	25
117	What causes edge fixation in walking flies?. Journal of Experimental Biology, 1990, 149, 281-92.	0.8	17
118	Mechanisms for Neural Signal Enhancement in the Blowfly Compound Eye. Journal of Experimental Biology, 1989, 144, 113-146.	0.8	60
119	Bi-partitioning and boundary detection in natural scenes. Spatial Vision, 1987, 2, 191-198.	1.4	19
120	The temporal properties of non-linear, transient cells in the locust medulla. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1987, 161, 431-440.	0.7	33
121	Temporal and spectral properties of sustaining cells in the medulla of the locust. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1987, 161, 441-448.	0.7	21
122	Directionally selective cells in the locust medulla. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1986, 159, 841-847.	0.7	35
123	Ultraviolet Sensitivity and Spectral Opponency in the Locust. Journal of Experimental Biology, 1986, 122, 193-208.	0.8	29
124	Cuttlefish camouflage: a quantitative study of patterning. Biological Journal of the Linnean Society, 0, 92, 335-345.	0.7	35
125	Dietary analysis I: food physics. , 0, , 237-254.		1

8

#	Article	IF	CITATIONS
127	Modular organization of adaptive colouration in flounder and cuttlefish revealed by independent component analysis. , 0, .		4
128	Zebrafish Differentially Process Colour Across Visual Space to Match Natural Scenes. SSRN Electronic Journal, 0, , .	0.4	2