Veronique Le Roux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5198537/publications.pdf

Version: 2024-02-01

172207 197535 3,316 49 29 49 citations h-index g-index papers 51 51 51 2758 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Copper Systematics in Arc Magmas and Implications for Crust-Mantle Differentiation. Science, 2012, 336, 64-68.	6.0	480
2	The Lherz spinel lherzolite: Refertilized rather than pristine mantle. Earth and Planetary Science Letters, 2007, 259, 599-612.	1.8	305
3	Zn/Fe systematics in mafic and ultramafic systems: Implications for detecting major element heterogeneities in the Earth's mantle. Geochimica Et Cosmochimica Acta, 2010, 74, 2779-2796.	1.6	249
4	The redox state of arc mantle using Zn/Fe systematics. Nature, 2010, 468, 681-685.	13.7	232
5	Mineralogical heterogeneities in the Earth's mantle: Constraints from Mn, Co, Ni and Zn partitioning during partial melting. Earth and Planetary Science Letters, 2011, 307, 395-408.	1.8	194
6	Chronology of Taylor Glacier Advances in Arena Valley, Antarctica, Using in Situ Cosmogenic 3He and 10Be. Quaternary Research, 1993, 39, 11-23.	1.0	126
7	Primitive neon from the center of the Galápagos hotspot. Earth and Planetary Science Letters, 2009, 286, 23-34.	1.8	107
8	Helium isotope geochemistry of mid-ocean ridge basalts from the South Atlantic. Earth and Planetary Science Letters, 1992, 110, 133-147.	1.8	101
9	Rapid helium isotopic variability in Mauna Kea shield lavas from the Hawaiian Scientific Drilling Project. Geochemistry, Geophysics, Geosystems, 2004, 5, n/a-n/a.	1.0	96
10	Mapping out the conduit of the Iceland mantle plume with helium isotopes. Earth and Planetary Science Letters, 2000, 176, 45-55.	1.8	95
11	Arc-like magmas generated by m \tilde{A} ©lange-peridotite interaction in the mantle wedge. Nature Communications, 2018, 9, 2864.	5. 8	90
12	Feedback between melt percolation and deformation in an exhumed lithosphere–asthenosphere boundary. Earth and Planetary Science Letters, 2008, 274, 401-413.	1.8	88
13	Generation of alkaline magmas in subduction zones by partial melting of mélange diapirs—An experimental study. Geology, 2018, 46, 343-346.	2.0	77
14	Isotopic decoupling during porous melt flow: A case-study in the Lherz peridotite. Earth and Planetary Science Letters, 2009, 279, 76-85.	1.8	72
15	Submarine Fernandina: Magmatism at the leading edge of the Galápagos hot spot. Geochemistry, Geophysics, Geosystems, 2006, 7, n/a-n/a.	1.0	66
16	Low 3He/4He ratios in basalt glasses from the western Southwest Indian Ridge (10°-24°E). Earth and Planetary Science Letters, 2003, 206, 509-528.	1.8	59
17	Correlated helium, neon, and melt production on the super-fast spreading East Pacific Rise near 17°S. Earth and Planetary Science Letters, 2005, 232, 125-142.	1.8	59
18	Isotope Geochemistry of the Oceanic Mantle Near the Bouvet Triple Junction. Geochimica Et Cosmochimica Acta, 1998, 62, 841-852.	1.6	56

#	Article	IF	CITATIONS
19	Barium isotope evidence for pervasive sediment recycling in the upper mantle. Science Advances, 2018, 4, eaas8675.	4.7	55
20	Isotopic evolution of Mauna Loa Volcano: A view from the submarine southwest rift zone. Geophysical Monograph Series, 1995, , 289-306.	0.1	54
21	Genovesa Submarine Ridge: A manifestation of plume-ridge interaction in the northern Galápagos Islands. Geochemistry, Geophysics, Geosystems, 2003, 4, n/a-n/a.	1.0	48
22	Recommended mineral-melt partition coefficients for FRTEs (Cu), Ga, and Ge during mantle melting. American Mineralogist, 2015, 100, 2533-2544.	0.9	45
23	Tracking flux melting and melt percolation in supra-subduction peridotites (Josephine ophiolite, USA). Contributions To Mineralogy and Petrology, 2014, 168, 1.	1.2	42
24	Estimating the carbon content of the deep mantle with Icelandic melt inclusions. Earth and Planetary Science Letters, 2019, 523, 115699.	1.8	40
25	Construction of the Galápagos platform by large submarine volcanic terraces. Geochemistry, Geophysics, Geosystems, 2008, 9, .	1.0	37
26	Fluorine and chlorine in mantle minerals and the halogen budget of the Earth's mantle. Contributions To Mineralogy and Petrology, 2017, 172, 1.	1.2	33
27	Quantifying the volume increase and chemical exchange during serpentinization. Geology, 2020, 48, 552-556.	2.0	33
28	Accretion of interplanetary dust in polar ice. Geophysical Research Letters, 2000, 27, 3145-3148.	1.5	31
29	Effects of deglaciation on the petrology and eruptive history of the Western Volcanic Zone, Iceland. Bulletin of Volcanology, 2015, 77, 1.	1.1	24
30	The emergence of a Gal $ ilde{A}_i$ pagos shield volcano, Roca Redonda. Contributions To Mineralogy and Petrology, 1998, 133, 136-148.	1.2	22
31	Age, geology, geophysics, and geochemistry of Mahukona Volcano, Hawaî i. Bulletin of Volcanology, 2012, 74, 1445-1463.	1.1	21
32	Deep-mantle krypton reveals Earth's early accretion of carbonaceous matter. Nature, 2021, 600, 462-467.	13.7	19
33	Magma ascent and lava flow emplacement rates during the 2011 Axial Seamount eruption based on CO2 degassing. Earth and Planetary Science Letters, 2018, 494, 32-41.	1.8	18
34	New constraints on mantle carbon from Mid-Atlantic Ridge popping rocks. Earth and Planetary Science Letters, 2019, 511, 67-75.	1.8	17
35	Hot and Heterogenous Highâ€ ³ He/ ⁴ He Components: New Constraints From Protoâ€Iceland Plume Lavas From Baffin Island. Geochemistry, Geophysics, Geosystems, 2019, 20, 5939-5967.	1.0	15
36	The distribution and abundance of halogens in eclogites: An in situ SIMS perspective of the Raspas Complex (Ecuador). American Mineralogist, 2020, 105, 307-318.	0.9	15

#	Article	IF	CITATIONS
37	Low-3He/4He sublithospheric mantle source for the most magnesian magmas of the Karoo large igneous province. Earth and Planetary Science Letters, 2015, 426, 305-315.	1.8	14
38	Noble gas systematics in new popping rocks from the Mid-Atlantic Ridge ($14\hat{A}^{\circ}N$): Evidence for small-scale upper mantle heterogeneities. Earth and Planetary Science Letters, 2019, 519, 70-82.	1.8	13
39	High water content of arc magmas recorded in cumulates from subduction zone lower crust. Nature Geoscience, 2022, 15, 501-508.	5.4	13
40	Dating layered websterite formation in the lithospheric mantle. Earth and Planetary Science Letters, 2016, 454, 103-112.	1.8	12
41	Experimental evidence for melt partitioning between olivine and orthopyroxene in partially molten harzburgite. Journal of Geophysical Research: Solid Earth, 2016, 121, 5776-5793.	1.4	11
42	Ophiolitic Pyroxenites Record Boninite Percolation in Subduction Zone Mantle. Minerals (Basel,) Tj ETQq0 0 0 rg	BT Overlo	ock 10 Tf 50 5
43	RADIOCARBON IN DISSOLVED ORGANIC CARBON BY UV OXIDATION: PROCEDURES AND BLANK CHARACTERIZATION AT NOSAMS. Radiocarbon, 2021, 63, 357-374.	0.8	9
44	Causes of Oceanic Crustal Thickness Oscillations Along a 74â€M Midâ€Atlantic Ridge Flow Line. Geochemistry, Geophysics, Geosystems, 2019, 20, 6123-6139.	1.0	6
45	Postmelting hydrogen enrichment in the oceanic lithosphere. Science Advances, 2021, 7, .	4.7	6
46	Quantitative vesicle analyses and total CO2 reconstruction in mid-ocean ridge basalts. Journal of Volcanology and Geothermal Research, 2020, 407, 107109.	0.8	5
47	A FRAMEWORK FOR TRANSDISCIPLINARY RADIOCARBON RESEARCH: USE OF NATURAL-LEVEL AND ELEVATED-LEVEL 14C IN ANTARCTIC FIELD RESEARCH. Radiocarbon, 0, , 1-14.	0.8	3
48	RADIOCARBON IN DISSOLVED ORGANIC CARBON BY UV OXIDATION: AN UPDATE OF PROCEDURES AND BLANK CHARACTERIZATION AT NOSAMS. Radiocarbon, 0 , , 1 -5.	0.8	2
49	Thallium isotope compositions of subduction-zone fluids: Insights from ultra-high pressure eclogites and veins in the Dabie terrane, eastern China. Chemical Geology, 2022, 599, 120843.	1.4	2