
Roisin M Dwyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5197826/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Monocyte Chemotactic Protein-1 Secreted by Primary Breast Tumors Stimulates Migration of Mesenchymal Stem Cells. Clinical Cancer Research, 2007, 13, 5020-5027.	3.2	399
2	Potential role of mesenchymal stem cells (MSCs) in the breast tumour microenvironment: stimulation of epithelial to mesenchymal transition (EMT). Breast Cancer Research and Treatment, 2010, 124, 317-326.	1.1	270
3	Engineering Exosomes for Cancer Therapy. International Journal of Molecular Sciences, 2017, 18, 1122.	1.8	215
4	Inhibition of IRE1 RNase activity modulates the tumor cell secretome and enhances response to chemotherapy. Nature Communications, 2018, 9, 3267.	5.8	192
5	Exosomeâ€encapsulated microRNAs as circulating biomarkers for breast cancer. International Journal of Cancer, 2016, 139, 1443-1448.	2.3	158
6	Employing mesenchymal stem cells to support tumor-targeted delivery of extracellular vesicle (EV)-encapsulated microRNA-379. Oncogene, 2018, 37, 2137-2149.	2.6	150
7	Dysregulated miR-183 inhibits migration in breast cancer cells. BMC Cancer, 2010, 10, 502.	1.1	121
8	Mesenchymal stem cell secretion of chemokines during differentiation into osteoblasts, and their potential role in mediating interactions with breast cancer cells. International Journal of Cancer, 2009, 124, 326-332.	2.3	116
9	Advances in mesenchymal stem cell-mediated gene therapy for cancer. Stem Cell Research and Therapy, 2010, 1, 25.	2.4	97
10	Transcriptome Characterization of Matched Primary Breast and Brain Metastatic Tumors to Detect Novel Actionable Targets. Journal of the National Cancer Institute, 2019, 111, 388-398.	3.0	81
11	Role of Extracellular Vesicles (EVs) in Cell Stress Response and Resistance to Cancer Therapy. Cancers, 2019, 11, 136.	1.7	80
12	In vivo Radioiodide Imaging and Treatment of Breast Cancer Xenografts after MUC1-Driven Expression of the Sodium Iodide Symporter. Clinical Cancer Research, 2005, 11, 1483-1489.	3.2	77
13	Mesenchymal Stem Cell-Mediated Delivery of the Sodium Iodide Symporter Supports Radionuclide Imaging and Treatment of Breast Cancer. Stem Cells, 2011, 29, 1149-1157.	1.4	76
14	miR-379 Regulates Cyclin B1 Expression and Is Decreased in Breast Cancer. PLoS ONE, 2013, 8, e68753.	1.1	75
15	Sodium iodide symporter-mediated radioiodide imaging and therapy of ovarian tumor xenografts in mice. Gene Therapy, 2006, 13, 60-66.	2.3	63
16	A Preclinical Large Animal Model of Adenovirus-Mediated Expression of the Sodium–lodide Symporter for Radioiodide Imaging and Therapy of Locally Recurrent Prostate Cancer. Molecular Therapy, 2005, 12, 835-841.	3.7	62
17	Nanoparticle-Based Delivery of Tumor Suppressor microRNA for Cancer Therapy. Cells, 2020, 9, 521.	1.8	61
18	MicroRNA-10a is reduced in breast cancer and regulated in part through retinoic acid. BMC Cancer, 2015, 15, 345.	1.1	59

2

ROISIN M DWYER

#	Article	IF	CITATIONS
19	Adenovirus-Mediated and Targeted Expression of the Sodium–Iodide Symporter PermitsIn VivoRadioiodide Imaging and Therapy of Pancreatic Tumors. Human Gene Therapy, 2006, 17, 661-668.	1.4	56
20	Tissue Iodine Content and Serum-Mediated 125I Uptake-Blocking Activity in Breast Cancer. Journal of Clinical Endocrinology and Metabolism, 2000, 85, 1245-1250.	1.8	56
21	Mesenchymal stem cells in the colorectal tumor microenvironment: Recent progress and implications. International Journal of Cancer, 2012, 131, 1-7.	2.3	46
22	Relationship between Circulating and Tissue microRNAs in a Murine Model of Breast Cancer. PLoS ONE, 2012, 7, e50459.	1.1	44
23	Impact of Mesenchymal Stem Cell secreted PAI-1 on colon cancer cell migration and proliferation. Biochemical and Biophysical Research Communications, 2013, 435, 574-579.	1.0	42
24	Investigation of the effect of dehydration on tissue dielectric properties in <i>ex vivo</i> measurements. Biomedical Physics and Engineering Express, 2017, 3, 045001.	0.6	42
25	Mesenchymal Stem Cells and Cancer: Tumor-Specific Delivery Vehicles or Therapeutic Targets?. Human Gene Therapy, 2010, 21, 1506-1512.	1.4	39
26	Dual plasmonic gold nanostars for photoacoustic imaging and photothermal therapy. Nanomedicine, 2017, 12, 457-471.	1.7	34
27	Prospective Assessment of Systemic MicroRNAs as Markers of Response to Neoadjuvant Chemotherapy in Breast Cancer. Cancers, 2020, 12, 1820.	1.7	31
28	The Sodium Iodide Symporter (NIS) and Potential Regulators in Normal, Benign and Malignant Human Breast Tissue. PLoS ONE, 2011, 6, e16023.	1.1	29
29	Screening of exosomal microRNAs from colorectal cancer cells. Cancer Biomarkers, 2017, 17, 427-435.	0.8	29
30	Amplification-free detection of microRNAs via a rapid microarray-based sandwich assay. Analytical and Bioanalytical Chemistry, 2017, 409, 3497-3505.	1.9	29
31	Boron clusters as breast cancer therapeutics. Journal of Inorganic Biochemistry, 2021, 218, 111412.	1.5	28
32	Investigating the Potential and Pitfalls of EV-Encapsulated MicroRNAs as Circulating Biomarkers of Breast Cancer. Cells, 2020, 9, 141.	1.8	24
33	MicroRNAs in Molecular Classification and Pathogenesis of Breast Tumors. Cancers, 2021, 13, 5332.	1.7	24
34	Relationship between CCL5 and transforming growth factor-β1 (TGFβ1) in breast cancer. European Journal of Cancer, 2011, 47, 1669-1675.	1.3	23
35	Extracellular vesicle release and uptake by the liver under normo- and hyperlipidemia. Cellular and Molecular Life Sciences, 2021, 78, 7589-7604.	2.4	22
36	Influence of stromal–epithelial interactions on breast cancer in vitro and in vivo. Breast Cancer Research and Treatment, 2012, 131, 401-411.	1.1	20

ROISIN M DWYER

#	Article	IF	CITATIONS
37	S100β as a serum marker in endocrine resistant breast cancer. BMC Medicine, 2017, 15, 79.	2.3	20
38	Relative and Absolute Expression Analysis of MicroRNAs Associated with Luminal A Breast Cancer– A Comparison. Pathology and Oncology Research, 2020, 26, 833-844.	0.9	19
39	Hydrogels: 3D Drug Delivery Systems for Nanoparticles and Extracellular Vesicles. Biomedicines, 2021, 9, 1694.	1.4	19
40	Circulating MicroRNAs in Cancer. Methods in Molecular Biology, 2017, 1509, 123-139.	0.4	18
41	Design and performance of a small-animal imaging system using synthetic collimation. Physics in Medicine and Biology, 2013, 58, 3397-3412.	1.6	15
42	Impact of Tumour Epithelial Subtype on Circulating microRNAs in Breast Cancer Patients. PLoS ONE, 2014, 9, e90605.	1.1	14
43	The sodium iodide symporter and thyroid disease. Clinical Endocrinology, 2002, 56, 427-429.	1.2	13
44	Systemic chemokine levels in breast cancer patients and their relationship with circulating menstrual hormones. Breast Cancer Research and Treatment, 2009, 115, 279-287.	1.1	13
45	Objective assessment of image quality VI: imaging in radiation therapy. Physics in Medicine and Biology, 2013, 58, 8197-8213.	1.6	12
46	Isolation of Secreted microRNAs (miRNAs) from Cell-conditioned Media. MicroRNA (Shariqah, United) Tj ETQqO	0 0 rgBT /0	Overlock 10 Tf
47	Targeting stromal cell Syndecanâ€2 reduces breast tumour growth, metastasis and limits immune evasion. International Journal of Cancer, 2021, 148, 1245-1259.	2.3	12
48	Solvent-selective routing for centrifugally automated solid-phase purification of RNA. Microfluidics and Nanofluidics, 2015, 18, 859-871.	1.0	11
49	Extracellular Vesicles for Cancer Therapy: Impact of Host Immune Response. Cells, 2020, 9, 224.	1.8	10
50	Cross Platform Standardisation of an Experimental Pipeline for Use in the Identification of Dysregulated Human Circulating MiRNAs. PLoS ONE, 2015, 10, e0137389.	1.1	7
51	Nanoscale structure detection and monitoring of tumour growth with optical coherence tomography. Nanoscale Advances, 2020, 2, 2853-2858.	2.2	6
52	Effect of Breast Cancer and Adjuvant Therapy on Adipose-Derived Stromal Cells: Implications for the Role of ADSCs in Regenerative Strategies for Breast Reconstruction. Stem Cell Reviews and Reports, 2021, 17, 523-538.	1.7	6
53	Characterization of nanosensitive multifractality in submicron scale tissue morphology and its alteration in tumor progression. Journal of Biomedical Optics, 2021, 26, .	1.4	6
54	Oncological Risk in Autologous Stem Cell Donation for Novel Tissue-Engineering Approaches to Postmastectomy Breast Regeneration. Breast Cancer: Basic and Clinical Research, 2019, 13, 117822341986489.	0.6	2

ROISIN M DWYER

#	Article	IF	CITATIONS
55	Emerging Evidence of the Functional Impact of the miR379/miR656 Cluster (C14MC) in Breast Cancer. Biomedicines, 2021, 9, 827.	1.4	2
56	Implementing subtypeâ€specific preâ€clinical models of breast cancer to study preâ€treatment aspirin effects. Cancer Medicine, 2022, , .	1.3	1
57	Marrow-derived mesenchymal stem cells (MSCs) stimulate breast cancer cell secretion and expression of chemokines. European Journal of Cancer, Supplement, 2008, 6, 70.	2.2	0
58	Hormonal regulation of breast cancer associated chemokines. European Journal of Cancer, Supplement, 2008, 6, 156.	2.2	0
59	Adenovirus-Mediated and Targeted Expression of the Sodium-Iodide Symporter Permits In Vivo Radioiodide Imaging and Therapy of Pancreatic Tumors. Human Gene Therapy, 2006, .	1.4	0
60	Abstract 3590: Investigation of exosome-encapsulated microRNA secretion in breast cancer. , 2014, , .		0
61	Abstract 3557: System-based BCL2 family protein signatures as predictive biomarkers in triple-negative breast cancer. , 2016, , .		Ο