Ming Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5197771/publications.pdf

Version: 2024-02-01

61	1,217	19	27
papers	citations	h-index	g-index
61	61	61	831 citing authors
all docs	docs citations	times ranked	

#	Article	IF	Citations
1	Parameter Design for a 6.78-MHz Wireless Power Transfer System Based on Analytical Derivation of Class E Current-Driven Rectifier. IEEE Transactions on Power Electronics, 2016, 31, 4280-4291.	5.4	105
2	A 6.78 MHz Multiple-Receiver Wireless Power Transfer System With Constant Output Voltage and Optimum Efficiency. IEEE Transactions on Power Electronics, 2018, 33, 5330-5340.	5.4	103
3	A Novel Design Methodology for High-Efficiency Current-Mode and Voltage-Mode Class-E Power Amplifiers in Wireless Power Transfer systems. IEEE Transactions on Power Electronics, 2017, 32, 4514-4523.	5.4	97
4	Battery Cell Equalization via Megahertz Multiple-Receiver Wireless Power Transfer. IEEE Transactions on Power Electronics, 2018, 33, 4135-4144.	5.4	89
5	Loading and Power Control for a High-Efficiency Class E PA-Driven Megahertz WPT System. IEEE Transactions on Industrial Electronics, 2016, 63, 6867-6876.	5.2	76
6	Low-Harmonic-Contents and High-Efficiency Class E Full-Wave Current-Driven Rectifier for Megahertz Wireless Power Transfer Systems. IEEE Transactions on Power Electronics, 2017, 32, 1198-1209.	5.4	57
7	Tunable Class \$E^2\$ DC–DC Converter With High Efficiency and Stable Output Power for 6.78-MHz Wireless Power Transfer. IEEE Transactions on Power Electronics, 2018, 33, 6877-6886.	5.4	51
8	Analysis and Design of A Robust Class \$E^2\$ DC–DC Converter for Megahertz Wireless Power Transfer. IEEE Transactions on Power Electronics, 2017, 32, 2835-2845.	5.4	47
9	Robust Control of PMSM Using Geometric Model Reduction and \$mu\$-Synthesis. IEEE Transactions on Industrial Electronics, 2018, 65, 498-509.	5.2	42
10	Dual-Band Wireless Power Transfer With Reactance Steering Network and Reconfigurable Receivers. IEEE Transactions on Power Electronics, 2020, 35, 496-507.	5.4	42
11	Battery Charging Profile-Based Parameter Design of a 6.78-MHz Class \$E^2\$ Wireless Charging System. IEEE Transactions on Industrial Electronics, 2017, 64, 6169-6178.	5.2	41
12	Autonomous Power Control in a Reconfigurable 6.78-MHz Multiple-Receiver Wireless Charging System. IEEE Transactions on Industrial Electronics, 2018, 65, 6177-6187.	5.2	38
13	A Novel Layered Bidirectional Equalizer Based on a Buck-Boost Converter for Series-Connected Battery Strings. Energies, 2017, 10, 1011.	1.6	33
14	A High-Efficiency/Output Power and Low-Noise Megahertz Wireless Power Transfer System Over a Wide Range of Mutual Inductance. IEEE Transactions on Microwave Theory and Techniques, 2017, 65, 4317-4325.	2.9	31
15	Analysis and Design of a High-Efficiency 6.78-MHz Wireless Power Transfer System With Scalable Number of Receivers. IEEE Transactions on Industrial Electronics, 2020, 67, 8281-8291.	5.2	30
16	Dual Frequency Hierarchical Modular Multilayer Battery Balancer Architecture. IEEE Transactions on Power Electronics, 2021, 36, 3099-3110.	5.4	26
17	Full-bridge rectifier input reactance compensation in Megahertz wireless power transfer systems. , $2015, \ldots$		23
18	High-Performance Megahertz Wireless Power Transfer: Topologies, Modeling, and Design. IEEE Industrial Electronics Magazine, 2021, 15, 28-42.	2.3	21

#	Article	IF	CITATIONS
19	Analysis and Implementation of 3D Magnetic Field Shaping via a 2D Planar Transmitting Coil Array. IEEE Transactions on Power Electronics, 2022, 37, 1172-1184.	5.4	21
20	Explicit Design of Impedance Matching Networks for Robust MHz WPT Systems With Different Features. IEEE Transactions on Power Electronics, 2022, 37, 11382-11393.	5.4	20
21	A Hybrid Class-E Topology With Constant Current and Constant Voltage Output for Light EVs Wireless Charging Application. IEEE Transactions on Transportation Electrification, 2021, 7, 2168-2180.	5.3	19
22	A Universal Optimal Drain–Source Voltage Tracking Scheme for Synchronous Resonant Rectifiers in Megahertz Wireless Power Transfer Applications. IEEE Transactions on Power Electronics, 2021, 36, 5147-5156.	5.4	18
23	A Multi-MHz Active Clamp Topology for High Cost-Performance Wireless Power Transfer. IEEE Transactions on Power Electronics, 2022, 37, 12828-12840.	5.4	18
24	Pulsed corona discharge for improving treatability of coking wastewater. Journal of Environmental Sciences, 2018, 64, 306-316.	3.2	17
25	A 13.56 MHz Multiport-Wireless-Coupled (MWC) Battery Balancer with High Frequency Online Electrochemical Impedance Spectroscopy. , 2019, , .		15
26	A Wide-Load-Range and Compact MHz Wireless Power Transfer System Based on Novel Reactance Compression Design and Edge Inductor. IEEE Transactions on Power Electronics, 2021, 36, 11183-11195.	5.4	12
27	Active Class E Rectifier for DC Output Voltage Regulation in Megahertz Wireless Power Transfer Systems. IEEE Transactions on Industrial Electronics, 2020, 67, 3618-3628.	5.2	11
28	A compact Class E rectifier for megahertz wireless power transfer. , 2015, , .		9
29	A 99.7% Efficient 300 W Hard Disk Drive Storage Server with Multiport Ac-Coupled Differential Power Processing (MAC-DPP) Architecture. , 2019, , .		9
30	An Improved Model Equation Based on a Gaussian Function Trinomial for State of Charge Estimation of Lithium-ion Batteries. Energies, 2019, 12, 1366.	1.6	8
31	Efficiency optimization and power distribution design of a megahertz multi-receiver wireless power transfer system., 2017,,.		7
32	Dual-Band Multi-Receiver Wireless Power Transfer: Architecture, Topology, and Control. , 2019, , .		7
33	A Multiway Bidirectional Multiport-Ac-Coupled (MAC) Battery Balancer with Online Electrochemical Impedance Spectroscopy. , 2020, , .		7
34	Design procedure of a class E2DC-DC converter for megahertz wireless power transfer based on a compact class E current-driven rectifier., 2017,,.		6
35	High Power Density Stacked-Coils Based power Receiver for MHz Wireless Power Transfer. , 2019, , .		6
36	A high-efficiency Class-E power amplifier with wide-range load in WPT systems. , 2015, , .		5

#	Article	IF	CITATIONS
37	Dual-Band Multi-Receiver Wireless Power Transfer with Reactance Steering Network. , 2018, , .		5
38	A Linear Extendable Phase-shift Controlled Multi-coil Transmitter Architecture for Wireless Power Transfer with 3D Magnetic Field Shaping. , 2020, , .		5
39	Optimal design of megahertz wireless power transfer systems for biomedical implants. , 2017, , .		4
40	Analysis and Design of a Self-Resonant Rectenna for Small-Size and Ultraloosely Coupled MHz Wireless Power Transfer Applications. IEEE Journal of Emerging and Selected Topics in Industrial Electronics, 2021, 2, 535-544.	3.0	4
41	Comparison of Different Multi-winding Transformer Models in Multi-port AC-coupled Converter Application. , 2021, , .		4
42	Dual-Band Wireless Power Transmitter with Reconfigurable Power Amplifier and "Decoupling Ring". , 2020, , .		4
43	Robust optimization for a 6.78-MHz wireless power transfer system with Class E rectifier., 2016,,.		3
44	Optimal selection of PI parameters of FOC for PMSM using structured H<inf> \hat{a}^* </inf>-synthesis. , 2017, , .		3
45	Optimization of the compensation capacitors for megahertz wireless power transfer systems. , 2015, , .		2
46	Robust control of PMSM using geometric model reduction and $\hat{l} \!\!\!\! \ \!\!\!\! \! \!$		2
47	Design methodology of the power receiver with high efficiency and constant output voltage for megahertz wireless power transfer. , 2018 , , .		2
48	A 6.78-MHz Class E2 Converter with the Flexible DC-DC Voltage Ratio. , 2019, , .		2
49	MSP-LEGO: Modular Series-Parallel (MSP) Architecture and LEGO Building Blocks for Non-isolated High Voltage Conversion Ratio Hybrid Dc-Dc Converters. , 2019, , .		2
50	Class E Active Rectifier with Controlled Output Voltage for MHz Wireless Power Transfer., 2020,,.		2
51	Circuit Architecture and Design of A Megahertz Wireless Power Transfer System for Drones. , 2022, , .		2
52	Optimal design of a 6.78-MHz wireless battery charging system based on average power loss., 2016,,.		1
53	A Phase-controlled Stacked-transmitter Wireless Power Transfer System for Magnetic Field Beamforming. , 2019, , .		1
54	A High-Power Density Finite Class E Power Amplifier with "Edge Inductor―for Wireless Power Transfer Application. , 2020, , .		1

#	Article	IF	CITATIONS
55	Optimization of Super Capacitor Buffered Dynamic Wireless Power Transfer System. , 2020, , .		1
56	A Compact Isolated 6.78-MHz Class E2 Converter via Wireless Inductive Coupling. , 2019, , .		0
57	Active Class E Rectifier with Controlled Output Voltage for Megahertz Wireless Power Transfer. , 2019, , .		0
58	A Hybrid Active/Passive Domino Architecture with MIMO Power Flow Control and Mixed Frequency Operation for Extended Range and Multi-Medium Wireless Power Transfer. , 2020, , .		0
59	A Robust Compensation Method for Megahertz Wireless Power Transfer Based on Rectifier Input Impedance Analysis. , 2020, , .		O
60	A Planar Multi-coil Transmitter for Visible Magnetic Field Shaping in Wireless Power Transfer. , 2021, , .		0
61	An Isolated 6.78-MHz Class D2 DC-DC Converter with Voltage Modulation. , 2020, , .		0