Bart Van Compernolle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5197636/publications.pdf

Version: 2024-02-01

56 papers

845 citations

17 h-index 28 g-index

58 all docs 58 docs citations

58 times ranked 1030 citing authors

#	Article	IF	CITATIONS
1	The geometry of the ICRF-induced wave–SOL interaction. A multi-machine experimental review in view of the ITER operation. Nuclear Fusion, 2022, 62, 016014.	1.6	18
2	Sudden collapse of a pressure profile generated by off-axis heating in a linear magnetized plasma. Physics of Plasmas, 2022, 29, 042104.	0.7	1
3	Ponderomotive force driven density modifications parallel to B0 on the LAPD. Physics of Plasmas, 2022, 29, 042508.	0.7	5
4	Reduction in RF sheath rectification with insulating antenna enclosure walls. Nuclear Fusion, 2022, 62, 086043.	1.6	2
5	Study of the Design and Assembly of a High Harmonic Fast Wave Antenna for an LAPD. Science and Technology of Nuclear Installations, 2021, 2021, 1-8.	0.3	1
6	Overview of plasma wave studies using the Basic Plasma Science Facility1., 2021,,.		0
7	The high-power helicon program at DIII-D: gearing up for first experiments. Nuclear Fusion, 2021, 61, 116034.	1.6	12
8	Stimulated excitation of thermal diffusion waves in a magnetized plasma pressure filament. Physics of Plasmas, 2021, 28, 092112.	0.7	1
9	Measurement and modeling of the radio frequency sheath impedance in a large magnetized plasma. Physics of Plasmas, 2020, 27, 072506.	0.7	6
10	3D full wave fast wave modeling with realistic antenna geometry and SOL plasma. AIP Conference Proceedings, 2020, , .	0.3	8
11	Full wave simulation of RF waves in cold plasma with the stabilized open-source finite element tool ERMES. AIP Conference Proceedings, 2020, , .	0.3	2
12	Overview of TAE technologies' HHFW project on LAPD. AIP Conference Proceedings, 2020, , .	0.3	2
13	Linear unstable whistler eigenmodes excited by a finite electron beam. Physics of Plasmas, 2019, 26, 082114.	0.7	1
14	Plasma flows generated by an annular thermionic cathode in a large magnetized plasma. Physics of Plasmas, 2019, 26, 022105.	0.7	13
15	Drift-Alfv \tilde{A} @n fluctuations and transport in multiple interacting magnetized electron temperature filaments. Journal of Plasma Physics, 2019, 85, .	0.7	4
16	Modifications produced on a large magnetized plasma column by a floating end-plate that is partially emissive: Experiment and theory. Physics of Plasmas, 2019, 26, 122102.	0.7	2
17	Observations of a field-aligned ion/ion-beam instability in a magnetized laboratory plasma. Physics of Plasmas, 2018, 25, .	0.7	19
18	Nonlocal Ohms Law, Plasma Resistivity, and Reconnection During Collisions of Magnetic Flux Ropes. Astrophysical Journal, 2018, 853, 33.	1.6	12

#	Article	IF	CITATIONS
19	Driven thermal waves and determination of the thermal conductivity in a magnetized plasma. Physical Review E, 2018, 98, .	0.8	4
20	Collisionless momentum transfer in space and astrophysical explosions. Nature Physics, 2017, 13, 573-577.	6.5	26
21	Electrostatic and whistler instabilities excited by an electron beam. Physics of Plasmas, 2017, 24, .	0.7	24
22	Laboratory study of collisionless coupling between explosive debris plasma and magnetized ambient plasma. Physics of Plasmas, 2017, 24, .	0.7	7
23	Non-local Ohm's law during collisions of magnetic flux ropes. Physics of Plasmas, 2017, 24, .	0.7	6
24	Experimental Observation of Convective Cell Formation due to a Fast Wave Antenna in the Large Plasma Device. Physical Review Letters, 2017, 119, 205002.	2.9	20
25	Laboratory simulation of magnetospheric chorus wave generation. Plasma Physics and Controlled Fusion, 2017, 59, 014016.	0.9	20
26	Avalanches driven by pressure gradients in a magnetized plasma. Physics of Plasmas, 2017, 24, .	0.7	14
27	10.1063/1.4986511.1., 2017, , .		0
28	Experimental study of the dynamics of a thin current sheet. Physica Scripta, 2016, 91, 054002.	1.2	9
29	Generation of shear Alfvén waves by repetitive electron heating. Journal of Geophysical Research: Space Physics, 2016, 121, 567-577.	0.8	2
30	The upgraded Large Plasma Device, a machine for studying frontier basic plasma physics. Review of Scientific Instruments, 2016, 87, 025105.	0.6	112
31	Pulsating Magnetic Reconnection Driven by Three-Dimensional Flux-Rope Interactions. Physical Review Letters, 2016, 116, 235101.	2.9	31
32	Resonant excitation of whistler waves by a helical electron beam. Geophysical Research Letters, 2016, 43, 2413-2421.	1.5	35
33	Excitation of Chirping Whistler Waves in a Laboratory Plasma. Physical Review Letters, 2015, 114, 245002.	2.9	51
34	Experimental study of a linear/non-linear flux rope. Physics of Plasmas, 2015, 22, 082118.	0.7	5
35	Three-dimensional gyrokinetic simulation of the relaxation of a magnetized temperature filament. Physics of Plasmas, 2015, 22, .	0.7	3
36	Electron beam generated whistler emissions in a laboratory plasma. AIP Conference Proceedings, 2015,	0.3	0

#	Article	IF	Citations
37	Excitation of shear Alfvén waves by a spiraling ion beam in a large magnetoplasma. Physical Review E, 2015, 91, 013109.	0.8	5
38	Laboratory study of avalanches in magnetized plasmas. Physical Review E, 2015, 91, 031102.	0.8	13
39	Laser-driven, magnetized quasi-perpendicular collisionless shocks on the Large Plasma Device. Physics of Plasmas, 2014, 21, .	0.7	22
40	Observation of collisionless shocks in a large currentâ€free laboratory plasma. Geophysical Research Letters, 2014, 41, 7413-7418.	1.5	62
41	Chaos in magnetic flux ropes. Plasma Physics and Controlled Fusion, 2014, 56, 064002.	0.9	28
42	Direct Detection of Resonant Electron Pitch Angle Scattering by Whistler Waves in a Laboratory Plasma. Physical Review Letters, 2014, 112, 145006.	2.9	22
43	Morphology and dynamics of three interacting kink-unstable flux ropes in a laboratory magnetoplasma. Physics of Plasmas, 2012, 19, 102102.	0.7	20
44	THREE-DIMENSIONAL RECONNECTION INVOLVING MAGNETIC FLUX ROPES. Astrophysical Journal, 2012, 753, 131.	1.6	39
45	Thermal plasma and fast ion transport in electrostatic turbulence in the large plasma device. Physics of Plasmas, 2012, 19, 055904.	0.7	2
46	The many faces of shear Alfvén waves. Physics of Plasmas, 2011, 18, 055501.	0.7	55
47	Wave and transport studies utilizing dense plasma filaments generated with a lanthanum hexaboride cathode. Physics of Plasmas, 2011, 18, .	0.7	21
48	Generation of shear Alfv $\tilde{\mathbb{A}}$ waves by a rotating magnetic field source: Three-dimensional simulations. Physics of Plasmas, 2011, 18, .	0.7	13
49	10.1063/1.3562118.1.,2011,,.		0
50	Magnetic field line reconnection in the current systems of flux ropes and Alfvén waves. Physica Scripta, 2010, T142, 014032.	1.2	13
51	A scalable multipass laser cavity based on injection by frequency conversion for noncollective Thomson scattering. Review of Scientific Instruments, 2010, 81, 10D518.	0.6	6
52	Cherenkov radiation of shear Alfvén waves. Physics of Plasmas, 2008, 15, .	0.7	8
53	Benchmark simulations of ICRF antenna coupling. AIP Conference Proceedings, 2007, , .	0.3	1
54	Generation of suprathermal electrons and Alfv \tilde{A} ©n waves by a high power pulse at the electron plasma frequency. Physics of Plasmas, 2006, 13, 092112.	0.7	17

#	Article	IF	CITATIONS
55	Generation of Alfv \tilde{A} @n waves by high power pulse at the electron plasma frequency. Geophysical Research Letters, 2005, 32, .	1.5	8
56	Helicon full-wave modeling with scrape-off-layer turbulence on the DIII-D tokamak. Nuclear Fusion, 0, ,	1.6	6