
Changtian Pan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5196887/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations. Scientific Reports, 2016, 6, 24765.	1.6	303
2	PAM-less plant genome editing using a CRISPR–SpRY toolbox. Nature Plants, 2021, 7, 25-33.	4.7	140
3	Genome-wide identification of MAPK, MAPKK, and MAPKKK gene families and transcriptional profiling analysis during development and stress response in cucumber. BMC Genomics, 2015, 16, 386.	1.2	128
4	CRISPR–Cas12b enables efficient plant genome engineering. Nature Plants, 2020, 6, 202-208.	4.7	116
5	Genome-Wide Identification of MAPKK and MAPKKK Gene Families in Tomato and Transcriptional Profiling Analysis during Development and Stress Response. PLoS ONE, 2014, 9, e103032.	1.1	108
6	CRISPR–Act3.0 for highly efficient multiplexed gene activation in plants. Nature Plants, 2021, 7, 942-953.	4.7	99
7	Tomato AUXIN RESPONSE FACTOR 5 regulates fruit set and development via the mediation of auxin and gibberellin signaling. Scientific Reports, 2018, 8, 2971.	1.6	87
8	Expanding the scope of plant genome engineering with Cas12a orthologs and highly multiplexable editing systems. Nature Communications, 2021, 12, 1944.	5.8	79
9	Boosting plant genome editing with a versatile CRISPR-Combo system. Nature Plants, 2022, 8, 513-525.	4.7	60
10	CRISPR/dCas-mediated transcriptional and epigenetic regulation in plants. Current Opinion in Plant Biology, 2021, 60, 101980.	3.5	50
11	Evidence for a specific and critical role of mitogenâ€activated protein kinase 20 in uniâ€ŧoâ€binucleate transition of microgametogenesis in tomato. New Phytologist, 2018, 219, 176-194.	3.5	49
12	Tomato stigma exsertion induced by high temperature is associated with the jasmonate signalling pathway. Plant, Cell and Environment, 2019, 42, 1205-1221.	2.8	47
13	Identification and expression profiling of microRNAs involved in the stigma exsertion under high-temperature stress in tomato. BMC Genomics, 2017, 18, 843.	1.2	42
14	Genome-Wide Identification and Expression Analysis of Two-Component System Genes in Tomato. International Journal of Molecular Sciences, 2016, 17, 1204.	1.8	41
15	PIF4 negatively modulates cold tolerance in tomato anthers via temperature-dependent regulation of tapetal cell death. Plant Cell, 2021, 33, 2320-2339.	3.1	27
16	Genome-Wide Identification of Two-Component System Genes in Cucurbitaceae Crops and Expression Profiling Analyses in Cucumber. Frontiers in Plant Science, 2016, 7, 899.	1.7	20
17	Phytochrome interacting factor 3 regulates pollen mitotic division through auxin signalling and sugar metabolism pathways in tomato. New Phytologist, 2022, 234, 560-577.	3.5	18
18	Heritable base-editing in <i>Arabidopsis</i> using RNA viral vectors. Plant Physiology, 2022, 189, 1920-1924.	2.3	17

Changtian Pan

#	Article	IF	CITATIONS
19	Highly efficient CRISPR systems for loss-of-function and gain-of-function research in pear calli. Horticulture Research, 2022, 9, .	2.9	12
20	Downregulation of the mitogen-activated protein kinase SIMAPK7 gene results in pollen abortion in tomato. Plant Cell, Tissue and Organ Culture, 2016, 126, 79-92.	1.2	11
21	Plant-Based Biosensors for Detecting CRISPR-Mediated Genome Engineering. ACS Synthetic Biology, 2021, 10, 3600-3603.	1.9	7
22	Rapid Vector Construction and Assessment of BE3 and Target-AID C to T Base Editing Systems in Rice Protoplasts. Methods in Molecular Biology, 2021, 2238, 95-113.	0.4	5
23	Expanding the targeting scope of Foklâ€dCas nuclease systems with SpRY and Mb2Cas12a. Biotechnology Journal, 2022, 17, e2100571.	1.8	3
24	CRISPRâ€Act3.0â€Based Highly Efficient Multiplexed Gene Activation in Plants. Current Protocols, 2022, 2, e365.	1.3	1
25	Assembly and Assessment of Prime Editing Systems for Precise Genome Editing in Plants. Springer	0.1	0