
Chengning Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5196851/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Formation mechanism of CuNiAl-rich multi-structured precipitation and its effect on mechanical properties for ultra-high strength low carbon steel obtained via direct quenching and tempering process. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 833, 142567.	5.6	12
2	Characterization of nanoscale precipitates and enhanced mechanical properties of high strength weld metals containing Cu additions after PWHT. Metallurgical Research and Technology, 2022, 119, 119.	0.7	3
3	Effect of Microstructural Evolution on the Mechanical Properties of Intercritical Heatâ€Affected Zone of Quenchedâ€andâ€Tempered Ultrahighâ€Strength Steel. Steel Research International, 2022, 93, .	1.8	3
4	Improvement of Cu-rich precipitation strengthening for high-strength low carbon steel strengthened via Ti-microalloying. Materials Letters, 2022, 316, 132031.	2.6	5
5	Effect of Electromagnetic Stirring Frequency on Inconel625-High Strength Low Alloy Steel Functionally Graded Material Fabricated by Wire Arc Additive Manufacturing. Journal of Materials Engineering and Performance, 2022, 31, 9703-9713.	2.5	5
6	Refinement mechanism of nanoscale Cu-rich precipitates by Mo addition and its effect on strength-toughness of Cu-bearing low carbon high strength steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 849, 143469.	5.6	4
7	Effect of H2S Corrosion on the Fracture Toughness of the X80 Pipeline Steel Welded Joint. Materials, 2022, 15, 4458.	2.9	4
8	Effect of austenite transformation degree on microstructure and fracture toughness of high-strain pipeline steel. Journal of Materials Science, 2021, 56, 13827-13840.	3.7	8
9	Improvement of mechanical properties for low carbon ultra-high strength steel strengthened by Cu-rich multistructured precipitation via modification to bainite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 817, 141337.	5.6	26
10	Effect of cyclic plastic deformation on hydrogen diffusion behavior and embrittlement susceptibility of reeling-pipeline steel weldments. International Journal of Hydrogen Energy, 2021, 46, 30158-30172.	7.1	11
11	The Influence of Ni on Bainite/Martensite Transformation and Mechanical Properties of Deposited Metals Obtained from Metal-Cored Wire. Metals, 2021, 11, 1971.	2.3	5
12	Effect of restraint stress on martensite transformation in low transformation temperature weld metal. Journal of Materials Science, 2020, 55, 2202-2214.	3.7	8
13	The mutual effect of hydrogen and cyclic plastic deformation on ductility degradation of X65 reeled-pipeline welded joint. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 791, 139739.	5.6	8
14	EBSD analysis of microstructures and mechanical properties of softened zones in X60 reeled-pipeline welded joint after cyclic plastic deformation. Welding in the World, Le Soudage Dans Le Monde, 2020, 64, 1213-1225.	2.5	12
15	Mechanical properties of low-transformation-temperature weld metals after low-temperature postweld heat treatment. Science and Technology of Welding and Joining, 2019, 24, 112-120.	3.1	15
16	Solidification behaviour and microstructure of welding transition zone using low-transformation-temperature welding consumables. Science and Technology of Welding and Joining, 2019, 24, 148-155.	3.1	6
17	Effects of heat input on microstructure and fracture toughness of simulated coarse-grained heat affected zone for HSLA steels. Materials Characterization, 2019, 155, 109818.	4.4	63
18	Deformation Behavior and Microstructural Evolution of Reeled Pipeline Steels during Cyclic Plastic Deformation. Journal of Materials Engineering and Performance, 2019, 28, 6449-6457.	2.5	2

CHENGNING LI

#	Article	IF	CITATIONS
19	Strength-toughness improvement of martensite-austenite dual phase deposited metals after austenite reversed treatment with short holding time. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 755, 57-65.	5.6	24
20	Effect of dilution on fatigue behaviour of welded joints produced by low-transformation-temperature fillers. Science and Technology of Welding and Joining, 2019, 24, 601-608.	3.1	5
21	Microstructural evolution and its influence on toughness in simulated inter-critical heat affected zone of large thickness bainitic steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 743, 67-76.	5.6	40
22	The Influence of Continuous Cooling Rate on Nanoâ€Precipitation Behavior of a Tiâ€Bearing Steel undergone Hot Deformation. Steel Research International, 2018, 89, 1700361.	1.8	2
23	Effect of cyclic plastic deformation on microstructure and mechanical properties of weld metals used for reel-lay pipeline steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 737, 77-84.	5.6	19
24	Enhanced toughness of Fe–12Cr–5.5Ni–Mo-deposited metals through formation of fine reversed austenite. Journal of Materials Science, 2018, 53, 15679-15693.	3.7	14
25	Recrystallization behavior in a low-density high-Mn high-Al austenitic steel undergone thin strip casting process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 733, 87-97.	5.6	26
26	Toughening mechanism of inter-critical heat-affected zone in a 690â€⁻MPa grade rack plate steel. Materials Characterization, 2018, 144, 631-640.	4.4	17
27	Microstructural Characteristics with Various Finish Rolling Temperature and Low Temperature Toughness in Hot Rolled Nb–Ti Ferritic Steel. ISIJ International, 2016, 56, 602-609.	1.4	8
28	Precipitation behavior and mechanical properties of a hot rolled Ti-bearing dual phase steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 673, 213-221.	5.6	24
29	Improvement of strength and toughness for hot rolled low-carbon bainitic steel via grain refinement and crystallographic texture. Materials Letters, 2016, 175, 157-160.	2.6	30
30	Mechanism of Microstructural Control and Mechanical Properties in Hot Rolled Plain C–Mn Steel during Controlled Cooling. ISIJ International, 2015, 55, 1721-1729.	1.4	12
31	Combined effects of welding heat input and peak temperature on precipitation and mechanical properties of the HAZ for modified austenitic medium manganese steels. Materials Research Express, 0, , .	1.6	2