Qing-Feng Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5196837/publications.pdf

Version: 2024-02-01

		516710	580821
30	634	16	25
papers	citations	h-index	g-index
20	20	20	920
30	30	30	830
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Highly luminescent hydrogels synthesized by covalent grafting of lanthanide complexes onto PNIPAM via one-pot free radical polymerization. Journal of Materials Chemistry C, 2016, 4, 3195-3201.	5.5	53
2	Thiol–ene reaction: a versatile tool in site-specific labelling of proteins with chemically inert tags for paramagnetic NMR. Chemical Communications, 2012, 48, 2704.	4.1	51
3	Water-soluble luminescent hybrid aminoclay grafted with lanthanide complexes synthesized by a Michael-like addition reaction and its gas sensing application in PVP nanofiber. Journal of Materials Chemistry C, 2017, 5, 4670-4676.	5 . 5	47
4	Hybrid luminescence materials assembled by [Ln(DPA)3]3â^' and mesoporous host through ion-pairing interactions with high quantum efficiencies and long lifetimes. Scientific Reports, 2015, 5, 8385.	3.3	44
5	Strategy to Enhance the Luminescence of Lanthanide Ions Doped MgWO ₄ Nanosheets through Incorporation of Carbon Dots. Inorganic Chemistry, 2018, 57, 8662-8672.	4.0	44
6	Controllable synthesis of Ln3+ (Ln = Tb, Eu) doped zinc phosphate nano-/micro-structured materials: phase, morphology and luminescence properties. Nanoscale, 2014, 6, 2137.	5.6	38
7	Water-soluble Tb ³⁺ and Eu ³⁺ complexes based on task-specific ionic liquid ligands and their application in luminescent poly(vinyl alcohol) films. Dalton Transactions, 2015, 44, 16810-16817.	3.3	31
8	Two 8-hydroxyquinoline-based fluorescent chemosensors for ultra-fast and sensitive detection of water content in strong polar organic solvents with large Stokes shifts. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 229, 117956.	3.9	29
9	Controllable synthesis of lanthanide Yb ³⁺ and Er ³⁺ co-doped AWO ₄ (A = Ca, Sr, Ba) micro-structured materials: phase, morphology and up-conversion luminescence enhancement. Dalton Transactions, 2018, 47, 8611-8618.	3.3	27
10	Facile fabrication of flexible core–shell graphene/conducting polymer microfibers for fibriform supercapacitors. RSC Advances, 2017, 7, 38187-38192.	3.6	25
11	Carbon nanodots enhance and optimize the photoluminescence of micro-spherical YBO3:Eu3+ phosphors. Journal of Alloys and Compounds, 2019, 783, 813-819.	5.5	24
12	Kinetic Assay of the Michael Additionâ€Like Thiol–Ene Reaction and Insight into Protein Bioconjugation. Chemistry - an Asian Journal, 2014, 9, 1808-1816.	3.3	22
13	Controlled synthesis of 3D flower-like MgWO ₄ :Eu ³⁺ hierarchical structures and fluorescence enhancement through introduction of carbon dots. CrystEngComm, 2018, 20, 608-614.	2.6	22
14	Controlled synthesis, asymmetrical transport behavior and luminescence properties of lanthanide doped ZnO mushroom-like 3D hierarchical structures. Nanoscale, 2014, 6, 13795-13802.	5 . 6	20
15	A fast-response turn-on quinoline-based fluorescent probe for selective and sensitive detection of zinc (II) and its application. Microchemical Journal, 2021, 160, 105776.	4.5	19
16	A water-soluble fluorescent chemosensor having a high affinity and sensitivity for Zn2+ and its biological application. Sensors and Actuators B: Chemical, 2018, 259, 484-491.	7.8	17
17	Multifunctional carbon dots for live cell staining and tissue engineering applications. Polymer Composites, 2018, 39, 73-80.	4.6	15
18	Structure and photoluminescence properties of Ca2GdZr2Al3O12:RE3+ (RE3+ = Eu, Sm, Pr, Dy, Tb) phosphors. Journal of Materials Science: Materials in Electronics, 2018, 29, 771-777.	2.2	14

#	Article	IF	CITATIONS
19	Hybridization of CsPbBr3 Perovskite Nanocrystals with Polymer Nanofiber to Improve their Luminescence Stability. European Journal of Inorganic Chemistry, 2018, 2018, 4215-4220.	2.0	14
20	Influence of counter ions on structure, morphology, thermal stability of lanthanide complexes containing dipicolinic acid ligand. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 214, 333-338.	3.9	11
21	Color-tunable, self-healing albumin-based lanthanide luminescent hydrogels fabricated by reductant-triggered gelation. International Journal of Biological Macromolecules, 2022, 195, 530-537.	7.5	11
22	A water-soluble fluorescent hybrid material based on aminoclay and its bioimaging application. RSC Advances, 2017, 7, 44614-44618.	3.6	9
23	Luminescent hydrogels with tunable emission colors and excellent adhesion performance fabricated by lanthanide complexes induced crosslinking and physical interaction. Polymer, 2021, 236, 124319.	3.8	9
24	Photocontrolled reversible modulation of lanthanide luminescence in mesoporous silica nanospheres by photochromic diarylethenes. Journal of Materials Chemistry C, 2022, 10, 6036-6042.	5 . 5	9
25	Controllable synthesis of Eu3+ ions doped Zn(OH)F and ZnO micro-structures: Phase, morphology and luminescence property. Journal of Rare Earths, 2019, 37, 955-960.	4.8	6
26	A strategy to enhance the up-conversion luminescence of nanospherical, rod-like and tube-like NaYF ₄ : Yb ³⁺ , Er ³⁺ (Tm ³⁺) by combining with carbon dots. CrystEngComm, 2021, 23, 935-943.	2.6	6
27	Controllable synthesis of multi-morphological SrWO ₄ :Ln ³⁺ (Ln = Eu, Tb) hierarchical structures and their luminescence properties. CrystEngComm, 2019, 21, 6482-6490.	2.6	5
28	Synthesis of fully porous silica microspheres with high specific surface area for fast HPLC separation of intact proteins and digests of ovalbumin. Mikrochimica Acta, 2020, 187, 382.	5.0	5
29	Luminescent mesoporous hybrid materials grafted with lanthanide complexes synthesized by Michael-like addition reaction. Journal of Porous Materials, 2019, 26, 567-574.	2.6	4
30	Heterogeneous catalytic oxidation of pyridines to N-oxides under mild conditions using tungsten-loaded TiO2. Reaction Kinetics, Mechanisms and Catalysis, 2016, 119, 235-243.	1.7	3