Donatella Taramelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/51968/publications.pdf

Version: 2024-02-01

144 papers 5,568 citations

66343 42 h-index 102487 66 g-index

148 all docs

148 docs citations

times ranked

148

6527 citing authors

#	Article	IF	CITATIONS
1	A rapid spectrophotometric method to identify inhibitors of human erythropoiesis. Journal of Pharmacological and Toxicological Methods, 2022, 113, 107134.	0.7	О
2	Total Synthesis of the Natural Chalcone Lophirone E, Synthetic Studies toward Benzofuran and Indole-Based Analogues, and Investigation of Anti-Leishmanial Activity. Molecules, 2022, 27, 463.	3.8	10
3	Search for structurally diverse heterocyclic analogs as dual-acting antimalarial and antileishmanial agents: An overview. European Journal of Medicinal Chemistry Reports, 2022, 4, 100031.	1.4	2
4	In Vitro SARS-CoV-2 Infection of Microvascular Endothelial Cells: Effect on Pro-Inflammatory Cytokine and Chemokine Release. International Journal of Molecular Sciences, 2022, 23, 4063.	4.1	7
5	Antiparasitic Drugs against SARS-CoV-2: A Comprehensive Literature Survey. Microorganisms, 2022, 10, 1284.	3.6	2
6	In Vitro Activity of the Arylaminoartemisinin GC012 against Helicobacter pylori and Its Effects on Biofilm. Pathogens, 2022, 11, 740.	2.8	4
7	Phagocytosis and activation of bone marrowâ€derived macrophages by Plasmodium falciparum gametocytes. Malaria Journal, 2021, 20, 81.	2.3	7
8	Synthesis and biological evaluation of benzhydryl-based antiplasmodial agents possessing Plasmodium falciparum chloroquine resistance transporter (PfCRT) inhibitory activity. European Journal of Medicinal Chemistry, 2021, 215, 113227.	5.5	5
9	Design, Synthesis and In Vitro Investigation of Novel Basic Celastrol Carboxamides as Bio-Inspired Leishmanicidal Agents Endowed with Inhibitory Activity against Leishmania Hsp90. Biomolecules, 2021, 11, 56.	4.0	14
10	Development of Potent 3-Br-isoxazoline-Based Antimalarial and Antileishmanial Compounds. ACS Medicinal Chemistry Letters, 2021, 12, 1726-1732.	2.8	6
11	Leishmania Promastigotes Enhance Neutrophil Recruitment through the Production of CXCL8 by Endothelial Cells. Pathogens, 2021, 10, 1380.	2.8	3
12	Synthesis, Molecular Docking and Antiplasmodial Activities of New Tetrahydro-Î ² -Carbolines. International Journal of Molecular Sciences, 2021, 22, 13569.	4.1	3
13	Antiplasmodial activity of triterpenes isolated from the methanolic leaf extract of Combretum racemosum P. Beauv. Journal of Ethnopharmacology, 2020, 247, 112203.	4.1	10
14	Safety of Artemisinin Derivatives in the First Trimester of Pregnancy: A Controversial Story. Molecules, 2020, 25, 3505.	3.8	9
15	<p>In vitro Multistage Malaria Transmission Blocking Activity of Selected Malaria Box Compounds</p> . Drug Design, Development and Therapy, 2020, Volume 14, 1593-1607.	4.3	6
16	Leishmania infantum infection reduces the amyloid \hat{l}^2 42-stimulated NLRP3 inflammasome activation. Brain, Behavior, and Immunity, 2020, 88, 597-605.	4.1	12
17	Discovery and Pharmacophore Mapping of a Lowâ€Nanomolar Inhibitor of P. falciparum Growth. ChemMedChem, 2019, 14, 1982-1994.	3.2	5
18	Identification of a potent and selective gametocytocidal antimalarial agent from the stem barks of Lophira lanceolata. Bioorganic Chemistry, 2019, 93, 103321.	4.1	13

#	Article	IF	CITATIONS
19	Bridged bicyclic 2,3-dioxabicyclo [3.3.1] nonanes as antiplasmodial agents: Synthesis, structure-activity relationships and studies on their biomimetic reaction with Fe(II). Bioorganic Chemistry, 2019, 89, 103020.	4.1	13
20	Malaria pigment accelerates MTT – formazan exocytosis in human endothelial cells. Parasitology, 2019, 146, 399-406.	1.5	5
21	Antimalarial agents against both sexual and asexual parasites stages: structure-activity relationships and biological studies of the Malaria Box compound 1-[5-(4-bromo-2-chlorophenyl)furan-2-yl]-N-[(piperidin-4-yl)methyl]methanamine (MMV019918) and analogues. European Journal of Medicinal Chemistry, 2018, 150, 698-718.	5 . 5	27
22	Facile Preparation of N-Glycosylated 10-Piperazinyl Artemisinin Derivatives and Evaluation of Their Antimalarial and Cytotoxic Activities. Molecules, 2018, 23, 1713.	3.8	15
23	Differential induction of malaria liver pathology in mice infected with Plasmodium chabaudi AS or Plasmodium berghei NK65. Malaria Journal, 2018, 17, 18.	2.3	19
24	Artemisone and Artemiside Are Potent Panreactive Antimalarial Agents That Also Synergize Redox Imbalance in Plasmodium falciparum Transmissible Gametocyte Stages. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	39
25	Malaria pigment stimulates chemokine production by human microvascular endothelium. Acta Tropica, 2017, 172, 125-131.	2.0	12
26	In Vivo and In Vitro Activities and ADME-Tox Profile of a Quinolizidine-Modified 4-Aminoquinoline: A Potent Anti-P. falciparum and Anti-P. vivax Blood-Stage Antimalarial. Molecules, 2017, 22, 2102.	3.8	12
27	HaCaT Cells as a Reliable In Vitro Differentiation Model to Dissect the Inflammatory/Repair Response of Human Keratinocytes. Mediators of Inflammation, 2017, 2017, 1-12.	3.0	179
28	Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathogens, 2016, 12, e1005763.	4.7	244
29	In vitro activity of artemisone and artemisinin derivatives against extracellular and intracellular Helicobacter pylori. International Journal of Antimicrobial Agents, 2016, 48, 101-105.	2.5	22
30	Reinvestigating Old Pharmacophores: Are 4-Aminoquinolines and Tetraoxanes Potential Two-Stage Antimalarials?. Journal of Medicinal Chemistry, 2016, 59, 264-281.	6.4	32
31	A chemical susceptibility profile of the <i>Plasmodium falciparum</i> transmission stages by complementary cell-based gametocyte assays. Journal of Antimicrobial Chemotherapy, 2016, 71, 1148-1158.	3.0	37
32	Synthesis and Antiplasmodial Activity of Novel Chloroquine Analogues with Bulky Basic Side Chains. ChemMedChem, 2015, 10, 1570-1583.	3.2	15
33	Stability of the Antimalarial Drug Dihydroartemisinin under Physiologically Relevant Conditions: Implications for Clinical Treatment and Pharmacokinetic and <i>In Vitro</i> Assays. Antimicrobial Agents and Chemotherapy, 2015, 59, 4046-4052.	3.2	47
34	cAMP-Signalling Regulates Gametocyte-Infected Erythrocyte Deformability Required for Malaria Parasite Transmission. PLoS Pathogens, 2015, 11, e1004815.	4.7	60
35	Modified quaternary ammonium salts as potential antimalarial agents. Bioorganic and Medicinal Chemistry, 2015, 23, 4681-4687.	3.0	15
36	Salinomycin and Other Ionophores as a New Class of Antimalarial Drugs with Transmission-Blocking Activity. Antimicrobial Agents and Chemotherapy, 2015, 59, 5135-5144.	3.2	40

#	Article	IF	CITATIONS
37	Involvement of Nod2 in the innate immune response elicited by malarial pigment hemozoin. Microbes and Infection, 2015, 17, 184-194.	1.9	20
38	Clofazimine analogs with antileishmanial and antiplasmodial activity. Bioorganic and Medicinal Chemistry, 2015, 23, 55-65.	3.0	20
39	Synthetic spirocyclic endoperoxides: new antimalarial scaffolds. MedChemComm, 2015, 6, 357-362.	3.4	39
40	Altered Lipid Composition of Surfactant and Lung Tissue in Murine Experimental Malaria-Associated Acute Respiratory Distress Syndrome. PLoS ONE, 2015, 10, e0143195.	2.5	13
41	Endoperoxide polyketides from a Chinese Plakortis simplex: Further evidence of the impact of stereochemistry on antimalarial activity of simple 1,2-dioxanes. Bioorganic and Medicinal Chemistry, 2014, 22, 4572-4580.	3.0	20
42	Optimized Synthesis and Antimalarial Activity of 1,2â€Dioxaneâ€4â€carboxamides. European Journal of Organic Chemistry, 2014, 2014, 1607-1614.	2.4	15
43	Inhibition of metalloproteinase-9 secretion and gene expression by artemisinin derivatives. Acta Tropica, 2014, 140, 77-83.	2.0	10
44	Antiplasmodial and anti-inflammatory activities of Canthium henriquesianum (K. Schum), a plant used in traditional medicine in Burkina Faso. Journal of Ethnopharmacology, 2013, 148, 763-769.	4.1	17
45	CRIMALDDI: platform technologies and novel anti-malarial drug targets. Malaria Journal, 2013, 12, 396.	2.3	15
46	Further optimization of plakortin pharmacophore: Structurally simple 4-oxymethyl-1,2-dioxanes with promising antimalarial activity. European Journal of Medicinal Chemistry, 2013, 70, 875-886.	5.5	12
47	A Plasmodium falciparum screening assay for anti-gametocyte drugs based on parasite lactate dehydrogenase detection. Journal of Antimicrobial Chemotherapy, 2013, 68, 2048-2058.	3.0	102
48	Curcumin enhances non-opsonic phagocytosis of Plasmodium falciparum through up-regulation of CD36 surface expression on monocytes/macrophages. Journal of Antimicrobial Chemotherapy, 2012, 67, 1895-1904.	3.0	36
49	Mimicking the Intramolecular Hydrogen Bond: Synthesis, Biological Evaluation, and Molecular Modeling of Benzoxazines and Quinazolines as Potential Antimalarial Agents. Journal of Medicinal Chemistry, 2012, 55, 10387-10404.	6.4	58
50	Antiplasmodial activities of 4-aminoquinoline–statine compounds. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 5915-5918.	2.2	9
51	PATHOGENESIS OF MALARIA IN TISSUES AND BLOOD. Mediterranean Journal of Hematology and Infectious Diseases, 2012, 4, e2012061.	1.3	72
52	Synthesis and antiplasmodial activity of new heteroaryl derivatives of 7-chloro-4-aminoquinoline. Bioorganic and Medicinal Chemistry, 2012, 20, 5965-5979.	3.0	27
53	Synthesis and comparison of antiplasmodial activity of (+), (â^') and racemic 7-chloro-4-(N-lupinyl)aminoquinoline. Bioorganic and Medicinal Chemistry, 2012, 20, 5980-5985.	3.0	11
54	Anti-plasmodial and insecticidal activities of the essential oils of aromatic plants growing in the Mediterranean area. Malaria Journal, 2012, 11, 219.	2.3	31

#	Article	IF	CITATIONS
55	Optimization of 4-Aminoquinoline/Clotrimazole-Based Hybrid Antimalarials: Further Structure–Activity Relationships, in Vivo Studies, and Preliminary Toxicity Profiling. Journal of Medicinal Chemistry, 2012, 55, 6948-6967.	6.4	43
56	Dihydroartemisinin inhibits the human erythroid cell differentiation by altering the cell cycle. Toxicology, 2012, 300, 57-66.	4.2	45
57	A New Class of Antimalarial Dioxanes Obtained through a Simple Two-Step Synthetic Approach: Rational Design and Structure–Activity Relationship Studies. Journal of Medicinal Chemistry, 2011, 54, 8526-8540.	6.4	17
58	A Chemotype That Inhibits Three Unrelated Pathogenic Targets: The Botulinum Neurotoxin Serotype A Light Chain,P. falciparumMalaria, and the Ebola Filovirus. Journal of Medicinal Chemistry, 2011, 54, 1157-1169.	6.4	46
59	Synthesis and Antiplasmodial Activity of Bicyclic Dioxanes as Simplified Dihydroplakortin Analogues. Journal of Medicinal Chemistry, 2011, 54, 5949-5953.	6.4	25
60	Natural haemozoin modulates matrix metalloproteinases and induces morphological changes in human microvascular endothelium. Cellular Microbiology, 2011, 13, 1275-1285.	2.1	42
61	Amodiaquine analogues containing NO-donor substructures: Synthesis and their preliminary evaluation as potential tools in the treatment of cerebral malaria. European Journal of Medicinal Chemistry, 2011, 46, 1757-1767.	5.5	29
62	The plant-based immunomodulator curcumin as a potential candidate for the development of an adjunctive therapy for cerebral malaria. Malaria Journal, 2011, 10, S10.	2.3	59
63	Antimalarial Mannoxanes: Hybrid Antimalarial Drugs with Outstanding Oral Activity Profiles and A Potential Dual Mechanism of Action. ChemMedChem, 2011, 6, 1357-1361.	3.2	25
64	Antimalarials based on the dioxane scaffold of plakortin. A concise synthesis and SAR studies. Bioorganic and Medicinal Chemistry, 2011, 19, 312-320.	3.0	26
65	Selective toxicity of dihydroartemisinin on human CD34+ erythroid cell differentiation. Toxicology, 2010, 276, 128-134.	4.2	27
66	Synthesis, antimalarial activity, and cellular toxicity of new arylpyrrolylaminoquinolines. Bioorganic and Medicinal Chemistry, 2010, 18, 6625-6633.	3.0	10
67	The Lipid Moiety of Haemozoin (Malaria Pigment) and P. falciparum Parasitised Red Blood Cells Bind Synthetic and Native Endothelin-1. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-9.	3.0	10
68	Antiplasmodial Triterpenoids from the Fruits of Neem, <i>Azadirachta indica</i> . Journal of Natural Products, 2010, 73, 1448-1452.	3.0	70
69	Manadoperoxides Aâ^'D from the Indonesian Sponge Plakortis cfr. simplex. Further Insights on the Structureâ^'Activity Relationships of Simple 1,2-Dioxane Antimalarials. Journal of Natural Products, 2010, 73, 1138-1145.	3.0	54
70	Ellagitannins of the fruit rind of pomegranate (Punica granatum) antagonize in vitro the host inflammatory response mechanisms involved in the onset of malaria. Malaria Journal, 2010, 9, 208.	2.3	84
71	CRIMALDDI: a co-ordinated, rational, and integrated effort to set logical priorities in anti-malarial drug discovery initiatives. Malaria Journal, 2010, 9, 202.	2.3	6
72	Novel Antimalarial Aminoquinolines: Heme Binding and Effects on Normal or Plasmodium falciparum -Parasitized Human Erythrocytes. Antimicrobial Agents and Chemotherapy, 2009, 53, 4339-4344.	3.2	23

#	Article	IF	CITATIONS
73	Interaction of Artemisinins with Oxyhemoglobin Hb–Fe ^{II} , Hb–Fe ^{II} , CarboxyHb–Fe ^{II} , Heme–Fe ^{II} , and Carboxyheme Fe ^{II} : Significance for Mode of Action and Implications for Therapy of Cerebral Malaria. ChemMedChem, 2009, 4, 2045-2053.	3.2	29
74	Two complementary fluorimetric assays for the determination of aminoquinoline binding and uptake by human erythrocytes in vitro. Analytical Biochemistry, 2009, 385, 371-373.	2.4	2
75	Antiplasmodial activity of Punica granatum L. fruit rind. Journal of Ethnopharmacology, 2009, 125, 279-285.	4.1	95
76	Combining 4-Aminoquinoline- and Clotrimazole-Based Pharmacophores toward Innovative and Potent Hybrid Antimalarials. Journal of Medicinal Chemistry, 2009, 52, 502-513.	6.4	55
77	Synthesis, Antimalarial Activity, and Preclinical Pharmacology of a Novel Series of 4′-Fluoro and 4′-Chloro Analogues of Amodiaquine. Identification of a Suitable "Back-Up―Compound for <i>N-tert</i> -Butyl Isoquine. Journal of Medicinal Chemistry, 2009, 52, 1828-1844.	6.4	56
78	Spatial distribution of heme species in erythrocytes infected with Plasmodium falciparum by use of resonance Raman imaging and multivariate analysis. Analytical and Bioanalytical Chemistry, 2008, 392, 1277-1282.	3.7	37
79	Atovaquoneâ€Statine "Doubleâ€Drugs―with High Antiplasmodial Activity. ChemMedChem, 2008, 3, 418-42	203.2	16
80	Opening Opportunities for New Drugs Against Neglected Diseases. ChemMedChem, 2008, 3, 371-373.	3.2	0
81	Novel amodiaquine congeners as potent antimalarial agents. Bioorganic and Medicinal Chemistry, 2008, 16, 6813-6823.	3.0	43
82	Antimalarial activity of novel pyrrolizidinyl derivatives of 4-aminoquinoline. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 3737-3740.	2.2	44
83	Anti-plasmodial activity of Ailanthus excelsa. Fìtoterapìâ, 2008, 79, 112-116.	2.2	10
84	Design, Synthesis, and Structure–Activity Relationship Studies of 4-Quinolinyl- and 9-Acrydinylhydrazones as Potent Antimalarial Agents. Journal of Medicinal Chemistry, 2008, 51, 1333-1343.	6.4	73
85	Clotrimazole Scaffold as an Innovative Pharmacophore Towards Potent Antimalarial Agents: Design, Synthesis, and Biological and Structure–Activity Relationship Studies. Journal of Medicinal Chemistry, 2008, 51, 1278-1294.	6.4	45
86	The Fe ²⁺ â€Mediated Decomposition, PfATP6 Binding, and Antimalarial Activities of Artemisone and Other Artemisinins: The Unlikelihood of Câ€Centered Radicals as Bioactive Intermediates. ChemMedChem, 2007, 2, 1480-1497.	3.2	107
87	Development of piperazine-tethered heterodimers as potent antimalarials against chloroquine-resistant P. falciparum strains. Synthesis and molecular modeling. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 3535-3539.	2.2	18
88	Modulation of glyceraldehyde 3 phosphate dehydrogenase activity and tyr-phosphorylation of Band 3 in human erythrocytes treated with ferriprotoporphyrin IX. Biochemical Pharmacology, 2007, 74, 1383-1389.	4.4	6
89	Design and Synthesis of Potent Antimalarial Agents Based on Clotrimazole Scaffold:Â Exploring an Innovative Pharmacophore. Journal of Medicinal Chemistry, 2007, 50, 595-598.	6.4	40
90	Differential effects on angiogenesis of two antimalarial compounds, dihydroartemisinin and artemisone: Implications for embryotoxicity. Toxicology, 2007, 241, 66-74.	4.2	68

#	Article	IF	Citations
91	Endoperoxide Derivatives from Marine Organisms:  1,2-Dioxanes of the Plakortin Family as Novel Antimalarial Agents. Journal of Medicinal Chemistry, 2006, 49, 7088-7094.	6.4	66
92	High Antiplasmodial Activity of Novel Plasmepsins I and II Inhibitors. Journal of Medicinal Chemistry, 2006, 49, 7440-7449.	6.4	31
93	Synthesis of N1-arylidene-N2-quinolyl- and N2-acrydinylhydrazones as potent antimalarial agents active against CQ-resistant P. falciparum strains. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 5384-5388.	2.2	142
94	Prevalence of pfcrt point mutations and level of chloroquine resistance in Plasmodium falciparum isolates from Africa. Infection, Genetics and Evolution, 2006, 6, 262-268.	2.3	27
95	4-Aminoquinoline quinolizidinyl- and quinolizidinylalkyl-derivatives with antimalarial activity. Bioorganic and Medicinal Chemistry, 2005, 13, 5338-5345.	3.0	54
96	Synthesis and antimalarial activities of some furoxan sulfones and related furazans. European Journal of Medicinal Chemistry, 2005, 40, 1335-1340.	5.5	41
97	Destabilisation and subsequent lysis of human erythrocytes induced by Plasmodium falciparum haem products. European Journal of Haematology, 2005, 74, 324-332.	2.2	68
98	Immunomodulatory α-Galactoglycosphingolipids: Synthesis of 2'-Fluoro-2'-deoxy-α-galactosylceramide and an Evaluation of Its Immunostimulating Properties. European Journal of Organic Chemistry, 2005, 2005, 3279-3285.	2.4	30
99	Antimalarial Polyketide Cycloperoxides from the Marine SpongePlakortis simplex. European Journal of Organic Chemistry, 2005, 2005, 5077-5083.	2.4	42
100	Damicoside from Axinella damicornis:  The Influence of a Glycosylated Galactose 4-OH Group on the Immunostimulatory Activity of α-Galactoglycosphingolipids. Journal of Medicinal Chemistry, 2005, 48, 7411-7417.	6.4	23
101	High-density lipoproteins attenuate interleukin-6 production in endothelial cells exposed to pro-inflammatory stimuli. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2005, 1736, 136-143.	2.4	43
102	Regulation of human erythrocyte glyceraldehyde-3-phosphate dehydrogenase by ferriprotoporphyrin IX. FEBS Letters, 2005, 579, 5095-5099.	2.8	6
103	Insights into the Mechanism of Action of Ferroquine. Relationship between Physicochemical Properties and Antiplasmodial Activity. Molecular Pharmaceutics, 2005, 2, 185-193.	4.6	150
104	Synthesis of Some Cryptolepine Analogues, Assessment of Their Antimalarial and Cytotoxic Activities, and Consideration of Their Antimalarial Mode of Action. Journal of Medicinal Chemistry, 2005, 48, 2701-2709.	6.4	93
105	Immunomodulatoryα-Galactoglycosphingolipids: Synthesis of a 2′-O-Methyl-α-Gal-GSL and Evaluation of Its Immunostimulating Capacity. European Journal of Organic Chemistry, 2004, 2004, 468-473.	2.4	29
106	4-Alkyl- and 4-phenylcoumarins from Mesua ferrea as promising multidrug resistant antibacterials. Phytochemistry, 2004, 65, 2867-2879.	2.9	116
107	Plasmepsin II inhibition and antiplasmodial activity of Primaquine–Statine `double-drugs'. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 2931-2934.	2.2	38
108	Evidence that haem iron in the malaria parasite is not needed for the antimalarial effects of artemisinin. FEBS Letters, 2004, 575, 91-94.	2.8	36

#	Article	IF	CITATIONS
109	1-40 ?-amyloid protein fragment modulates the expression of CD44 and CD71 on the astrocytoma cell line in the presence of IL1? and TNF?. Journal of Cellular Physiology, 2003, 196, 190-195.	4.1	11
110	Artemisinin Antimalarials Do Not Inhibit Hemozoin Formation. Antimicrobial Agents and Chemotherapy, 2003, 47, 1175-1175.	3.2	67
111	Differential Cytokine Pattern in the Spleens and Livers of BALB/c Mice Infected with Penicillium marneffei: Protective Role of Gamma Interferon. Infection and Immunity, 2003, 71, 465-473.	2.2	55
112	In VitroStudies on the Mechanism of Action of Two Compounds with Antiplasmodial Activity: Ellagic Acid and 3,4,5-Trimethoxyphenyl(6′-O-Galloyl)-β-D-glucopyranoside. Planta Medica, 2003, 69, 162-164.	1.3	32
113	Accelerated senescence of human erythrocytes cultured with Plasmodium falciparum. Blood, 2003, 102, 705-711.	1.4	87
114	Activity against Plasmodium falciparum of cycloperoxide compounds obtained from the sponge Plakortis simplex. Journal of Antimicrobial Chemotherapy, 2002, 50, 883-888.	3.0	66
115	Endothelin-1 production by a microvascular endothelial cell line treated with Plasmodium falciparum parasitized red blood cells. Clinical Science, 2002, 103, 464S-466S.	4.3	10
116	Structureâ^'Activity Relationships in 4-Aminoquinoline Antiplasmodials. The Role of the Group at the 7-Position. Journal of Medicinal Chemistry, 2002, 45, 3531-3539.	6.4	215
117	Does chloroquine really act through oxidative stress?. FEBS Letters, 2002, 522, 3-5. Prooxidant activity of Î ² -hematin (synthetic malaria pigment) in arachidonic acid micelles and	2.8	28
118	phospholipid large unilamellar vesicles 11 Abbreviations: AA, arachidonic acid; AH, (ferriprotoporphyrin) Tj ETQq0 hydroperoxide; DMSO, dimethylsulfoxide; FV, food vacuole; GSH, reduced glutathione; HZ, hemozoin; LOOH, hydroperoxides; LUVs, Large Unilamellar Vesicles; PE, phosphatidylethanolamine; PL,	0 0 rgBT / 4.4	Overlock 10 T 26
119	phospholipid; RBC, red blood. Biochemical Pharmacology, 2001, 61, 999-1009. Inhibition of Intramacrophage Growth of Penicillium marneffei by 4-Aminoquinolines. Antimicrobial Agents and Chemotherapy, 2001, 45, 1450-1455.	3.2	17
120	Experimental Results on Chloroquine and AIDS-Related Opportunistic Infections. Journal of Acquired Immune Deficiency Syndromes (1999), 2001, 26, 300-301.	2.1	10
121	Experimental Results on Chloroquine and AIDS-Related Opportunistic Infections. Journal of Acquired Immune Deficiency Syndromes (1999), 2001, 26, 300-301.	2.1	18
122	Macrophage Preconditioning with Synthetic Malaria Pigment Reduces Cytokine Production via Heme Iron-Dependent Oxidative Stress. Laboratory Investigation, 2000, 80, 1781-1788.	3.7	49
123	Standardization of the Physicochemical Parameters to Assess in Vitro the \hat{I}^2 -Hematin Inhibitory Activity of Antimalarial Drugs. Experimental Parasitology, 2000, 96, 249-256.	1.2	102
124	Effects of Iron on Extracellular and Intracellular Growth of Penicillium marneffei. Infection and Immunity, 2000, 68, 1724-1726.	2.2	24
125	Phagocytosis of Hemozoin (Native and Synthetic Malaria Pigment), and Plasmodium falciparum Intraerythrocyte-Stage Parasites by Human and Mouse Phagocytes. Ultrastructural Pathology, 2000, 24, 9-13.	0.9	23
126	A Novel Endogenous Antimalarial:  Fe(II)-Protoporphyrin IXα (Heme) Inhibits Hematin Polymerization to β-Hematin (Malaria Pigment) and Kills Malaria Parasites. Biochemistry, 1999, 38, 8858-8863.	2.5	65

#	Article	IF	CITATIONS
127	The effect of synthetic malaria pigment (\hat{l}^2 -haematin) on adhesion molecule expression and interleukin-6 production by human endothelial cells. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1998, 92, 57-62.	1.8	28
128	Macrophage populations of different origins have distinct susceptibilities to lipid peroxidation induced by \hat{l}^2 -haematin (malaria pigment). FEBS Letters, 1998, 433, 215-218.	2.8	21
129	Nitric Oxide–Mediated Induction of Ferritin Synthesis in J774 Macrophages by Inflammatory Cytokines: Role of Selective Iron Regulatory Protein-2 Downregulation. Blood, 1998, 91, 1059-1066.	1.4	127
130	Inhibition of VCAM-1 Expression in Endothelial Cells by Reconstituted High Density Lipoproteins. Biochemical and Biophysical Research Communications, 1997, 238, 61-65.	2.1	150
131	Non-iron porphyrins inhibit β-haematin (malaria pigment) polymerisation. FEBS Letters, 1997, 409, 297-299.	2.8	54
132	In vitro identification of a subpopulation of fibroblasts that produces high levels of collagen in scleroderma patients. Arthritis and Rheumatism, 1990, 33, 842-852.	6.7	37
133	Lack of suppressive activity of human primary melanoma cells on the activation of autologous lymphocytes. Cancer Immunology, Immunotherapy, 1988, 26, 61-6.	4.2	8
134	Systemic administration of autologous, alloactivated helper-enriched lymphocytes to patients with metastatic melanoma of the lung. Cancer Immunology, Immunotherapy, 1986, 21, 148-55.	4.2	27
135	Autologous cellular immune response to primary and metastatic human melanomas and its regulation by DR antigens expressed on tumor cells. Cancer and Metastasis Reviews, 1985, 4, 7-26.	5.9	22
136	Inhibition of Human Melanoma Growth in Nude Mice by Autologous, Alloactivated Peripheral Blood Lymphocytes. Tumori, 1984, 70, 35-39.	1.1	11
137	Lymphokines inhibit macrophage RNA synthesis. Cellular Immunology, 1984, 84, 51-64.	3.0	7
138	Primary but not metastatic human melanomas expressing dr antigens stimulate autologous lymphocytes. International Journal of Cancer, 1984, 33, 591-597.	5.1	91
139	The inhibition of lymphocyte stimulation by autologous human metastatic melanoma cells correlates with the expression of HLA-DR antigens on the tumor cells. International Journal of Cancer, 1984, 34, 797-806.	5.1	63
140	Induction of immunotoxicity by polycyclic hydrocarbons: Role of the Ah locus. Archives of Toxicology, 1984, 56, 18-24.	4.2	30
141	Role of Bacterial Lipopolysaccharide and Lymphokine in the Regulation of Macrophage Activation: Correlates between Secretion of Plasminogen Activator and Tumor Lysis. Immunobiology, 1984, 166, 410-427.	1.9	2
142	RNA synthesis in activated macrophages I. Poly(I) \hat{A} · poly(C)-induced triggering of cytolytic activity is associated with decrease in RNA synthesis. European Journal of Immunology, 1983, 13, 959-964.	2.9	8
143	Lysis of autologous human melanoma cells by in vitro allosensitized peripheral blood lymphocytes. Cancer Immunology, Immunotherapy, 1982, 14, 99-104.	4.2	31
144	Measurement of macrophage-mediated cytotoxicity against adherent and non-adherent target cells by release of 111indium-oxine. Journal of Immunological Methods, 1981, 43, 319-331.	1.4	48