
Marcos Miñarro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5196713/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of groundcover management on ground beetles (Coleoptera: Carabidae) in an apple orchard. Applied Soil Ecology, 2003, 23, 111-117.	4.3	71
2	Colonization of apple orchards by predators of Dysaphis plantaginea: sequential arrival, response to prey abundance and consequences for biological control. BioControl, 2005, 50, 403-414.	2.0	65
3	Management tradeâ€offs on ecosystem services in apple orchards across Europe: Direct and indirect effects of organic production. Journal of Applied Ecology, 2019, 56, 802-811.	4.0	59
4	Role of floral resources in the conservation of pollinator communities in cider-apple orchards. Agriculture, Ecosystems and Environment, 2014, 183, 118-126.	5.3	54
5	Birds as suppliers of pest control in cider apple orchards: Avian biodiversity drivers and insectivory effect. Agriculture, Ecosystems and Environment, 2018, 254, 233-243.	5.3	53
6	Hedgerows surrounding organic apple orchards in <scp>northâ€west S</scp> pain: potential to conserve beneficial insects. Agricultural and Forest Entomology, 2013, 15, 382-390.	1.3	50
7	Organic versus conventional management in an apple orchard: effects of fertilization and treeâ€row management on groundâ€dwelling predaceous arthropods. Agricultural and Forest Entomology, 2009, 11, 133-142.	1.3	37
8	Pollination services provided by wild insects to kiwifruit (Actinidia deliciosa). Apidologie, 2015, 46, 276-285.	2.0	35
9	Predatory arthropods in apple orchards across Europe: Responses to agricultural management, adjacent habitat, landscape composition and country. Agriculture, Ecosystems and Environment, 2019, 273, 141-150.	5.3	34
10	Role of ants in structuring the aphid community on apple. Ecological Entomology, 2010, 35, 206-215.	2.2	32
11	Do farmers care about pollinators? A cross-site comparison of farmers' perceptions, knowledge, and management practices for pollinator-dependent crops. International Journal of Agricultural Sustainability, 2021, 19, 1-15.	3.5	27
12	Managementâ€dependent effects of pollinator functional diversity on apple pollination services: A response–effect trait approach. Journal of Applied Ecology, 2021, 58, 2843-2853.	4.0	26
13	Complementarity and redundancy in the functional niche of cider apple pollinators. Apidologie, 2018, 49, 789-802.	2.0	24
14	Enhancing ecosystem services in apple orchards: Nest boxes increase pest control by insectivorous birds. Journal of Applied Ecology, 2021, 58, 465-475.	4.0	24
15	Opportunities to reduce pollination deficits and address production shortfalls in an important insectâ€pollinated crop. Ecological Applications, 2021, 31, e02445.	3.8	24
16	Using ecological and field survey data to establish a national list of the wild bee pollinators of crops. Agriculture, Ecosystems and Environment, 2021, 315, 107447.	5.3	24
17	Animal biodiversity in cider apple orchards: Simultaneous environmental drivers and effects on insectivory and pollination. Agriculture, Ecosystems and Environment, 2020, 295, 106918.	5.3	23
18	Weed communities in apple orchards under organic and conventional fertilization and tree-row management. Crop Protection, 2012, 39, 89-96.	2.1	20

Marcos Miñarro

#	Article	IF	CITATIONS
19	On-farm experiences shape farmer knowledge, perceptions of pollinators, and management practices. Global Ecology and Conservation, 2021, 32, e01949.	2.1	20
20	Tolerance of some scab-resistant apple cultivars to the rosy apple aphid, Dysaphis plantaginea. Crop Protection, 2008, 27, 391-395.	2.1	16
21	Vole pests in apple orchards: use of presence signs to estimate the abundance of Arvicola terrestris cantabriae and Microtus lusitanicus. Journal of Pest Science, 2012, 85, 477-488.	3.7	15
22	Continuous breeding of fossorial water voles in northwestern Spain: potential impact on apple orchards. Folia Zoologica, 2017, 66, 29-36.	0.9	15
23	Farmers' perceptions and knowledge of natural enemies as providers of biological control in cider apple orchards. Journal of Environmental Management, 2020, 266, 110589.	7.8	15
24	Environmental Objectives of Spanish Agriculture: Scientific Guidelines for their Effective Implementation under the Common Agricultural Policy 2023-2030. Ardeola, 2021, 68, .	0.7	15
25	More intraguild prey than pest species in arachnid diets may compromise biological control in apple orchards. Basic and Applied Ecology, 2021, 57, 1-13.	2.7	15
26	Top-down and bottom-up regulation of codling moth populations in cider apple orchards. Crop Protection, 2021, 143, 105545.	2.1	12
27	Divergence time estimation using ddRAD data and an isolation-with-migration model applied to water vole populations of Arvicola. Scientific Reports, 2022, 12, 4065.	3.3	9
28	Unravelling pest infestation and biological control in low-input orchards: the case of apple blossom weevil. Journal of Pest Science, 2018, 91, 1047-1061.	3.7	8
29	Reproductive potential of a vole pest (Arvicola scherman) in Spanish apple orchards. Spanish Journal of Agricultural Research, 2016, 14, e1008.	0.6	8
30	Intra-annual continuous reproduction of the apple pest Microtus lusitanicus: Implications for management. Crop Protection, 2017, 96, 164-172.	2.1	7
31	Relationship between hydroxycinnamic acids and the resistance of apple cultivars to rosy apple aphid. Talanta, 2018, 187, 330-336.	5.5	7
32	The occurrence and abundance of two alien eucalypt psyllids in apple orchards. Pest Management Science, 2014, 70, 1676-1683.	3.4	6
33	Complementary Contribution of Wild Bumblebees and Managed Honeybee to the Pollination Niche of an Introduced Blueberry Crop. Insects, 2021, 12, 595.	2.2	6
34	Pest status of leafminers in cider-apples: The case of orchards in Asturias (NW Spain). Crop Protection, 2011, 30, 1485-1491.	2.1	5
35	Studies on the Codling Moth (Lepidoptera: Tortricidae) Response to Different Codlemone Release Rates. Environmental Entomology, 2013, 42, 1383-1389.	1.4	5
36	Candidate insect vectors of apple proliferation in Northwest Spain. SpringerPlus, 2016, 5, 1240.	1.2	5

Marcos Miñarro

#	Article	IF	CITATIONS
37	Susceptibility of cider apple cultivars to the sooty blotch and flyspeck complex in Spain. European Journal of Plant Pathology, 2013, 135, 201-209.	1.7	3
38	p53 gene discriminates two ecologically divergent sister species of pine voles. Heredity, 2015, 115, 444-451.	2.6	3
39	Mercury, Lead and Cadmium Concentrations in Talpa occidentalis and in Their Digeneans of the Genus Ityogonimus. Acta Parasitologica, 2019, 64, 464-470.	1.1	3
40	A Bocage Landscape Restricts the Gene Flow of Pest Vole Populations. Life, 2022, 12, 800.	2.4	3
41	First finding of Ityogonimus lorum and I. ocreatus co-infection in the Iberian mole, Talpa occidentalis. Acta Parasitologica, 2018, 63, 835-838.	1.1	2
42	Variable relationships between trait diversity and avian ecological functions in agroecosystems. Functional Ecology, 2023, 37, 87-98.	3.6	2
43	Ecological Analysis of the Helminth Community of Microtus lusitanicus (Gerbe, 1879) (Rodentia) in Asturias (NW Spain). Animals, 2021, 11, 3055.	2.3	0