
Sean W Limesand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5196383/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Attenuated Insulin Release and Storage in Fetal Sheep Pancreatic Islets with Intrauterine Growth Restriction. Endocrinology, 2006, 147, 1488-1497.	1.4	185
2	Increased insulin sensitivity and maintenance of glucose utilization rates in fetal sheep with placental insufficiency and intrauterine growth restriction. American Journal of Physiology - Endocrinology and Metabolism, 2007, 293, E1716-E1725.	1.8	155
3	Epigenetic responses and the developmental origins of health and disease. Journal of Endocrinology, 2019, 242, T105-T119.	1.2	152
4	Diminished β-cell replication contributes to reduced β-cell mass in fetal sheep with intrauterine growth restriction. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 288, R1297-R1305.	0.9	129
5	Investigating the causes of low birth weight in contrasting ovine paradigms. Journal of Physiology, 2005, 565, 19-26.	1.3	104
6	One process for pancreatic β-cell coalescence into islets involves an epithelial–mesenchymal transition. Journal of Endocrinology, 2009, 203, 19-31.	1.2	89
7	Consequences of a compromised intrauterine environment on islet function. Journal of Endocrinology, 2010, 205, 211-224.	1.2	89
8	Chronic exposure to elevated norepinephrine suppresses insulin secretion in fetal sheep with placental insufficiency and intrauterine growth restriction. American Journal of Physiology - Endocrinology and Metabolism, 2010, 298, E770-E778.	1.8	81
9	Developmental Programming in Response to Intrauterine Growth Restriction Impairs Myoblast Function and Skeletal Muscle Metabolism. Journal of Pregnancy, 2012, 2012, 1-10.	1.1	73
10	An Islet-Stabilizing Implant Constructed Using a Preformed Vasculature. Tissue Engineering - Part A, 2008, 14, 433-440.	1.6	71
11	Characterization of Glucose Transporter 8 (GLUT8) in the Ovine Placenta of Normal and Growth Restricted Fetuses. Placenta, 2004, 25, 70-77.	0.7	68
12	Myoblasts from intrauterine growthâ€restricted sheep fetuses exhibit intrinsic deficiencies in proliferation that contribute to smaller semitendinosus myofibres. Journal of Physiology, 2014, 592, 3113-3125.	1.3	64
13	The impact of IUGR on pancreatic islet development and β-cell function. Journal of Endocrinology, 2017, 235, R63-R76.	1.2	60
14	l² ₂ -Adrenergic receptor desensitization in perirenal adipose tissue in fetuses and lambs with placental insufficiency-induced intrauterine growth restriction. Journal of Physiology, 2010, 588, 3539-3549.	1.3	59
15	Reductions in insulin concentrations and β-cell mass precede growth restriction in sheep fetuses with placental insufficiency. American Journal of Physiology - Endocrinology and Metabolism, 2013, 304, E516-E523.	1.8	57
16	The bovine mammary gland expresses multiple functional isoforms of serotonin receptors. Journal of Endocrinology, 2009, 203, 123-131.	1.2	55
17	Fetal adaptations in insulin secretion result from high catecholamines during placental insufficiency. Journal of Physiology, 2017, 595, 5103-5113.	1.3	54
18	Adaptation of ovine fetal pancreatic insulin secretion to chronic hypoglycaemia and euglycaemic correction. Journal of Physiology, 2003, 547, 95-105.	1.3	53

SEAN W LIMESAND

#	Article	IF	CITATIONS
19	Maternal amino acid supplementation for intrauterine growth restriction. Frontiers in Bioscience - Scholar, 2011, S3, 428-444.	0.8	52
20	Localisation of glucose transport in the ruminant placenta: implications for sequential use of transporter isoforms. Placenta, 2005, 26, 626-640.	0.7	50
21	Catecholamines Mediate Multiple Fetal Adaptations during Placental Insufficiency That Contribute to Intrauterine Growth Restriction: Lessons from Hyperthermic Sheep. Journal of Pregnancy, 2011, 2011, 1-9.	1.1	47
22	Decreased nutrient-stimulated insulin secretion in chronically hypoglycemic late-gestation fetal sheep is due to an intrinsic islet defect. American Journal of Physiology - Endocrinology and Metabolism, 2006, 291, E404-E411.	1.8	46
23	Chronic late-gestation hypoglycemia upregulates hepatic PEPCK associated with increased PGC1α mRNA and phosphorylated CREB in fetal sheep. American Journal of Physiology - Endocrinology and Metabolism, 2008, 294, E365-E370.	1.8	45
24	Intrauterine growth-restricted sheep fetuses exhibit smaller hindlimb muscle fibers and lower proportions of insulin-sensitive Type I fibers near term. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 310, R1020-R1029.	0.9	45
25	Pattern of Vitellogenesis and Follicle Maturational Competence during the Ovarian Follicular Cycle ofFundulus heteroclitus. General and Comparative Endocrinology, 1996, 103, 24-35.	0.8	42
26	Adrenal Demedullation and Oxygen Supplementation Independently Increase Glucose-Stimulated Insulin Concentrations in Fetal Sheep With Intrauterine Growth Restriction. Endocrinology, 2016, 157, 2104-2115.	1.4	41
27	Elevated plasma norepinephrine inhibits insulin secretion, but adrenergic blockade reveals enhanced β-cell responsiveness in an ovine model of placental insufficiency at 0.7 of gestation. Journal of Developmental Origins of Health and Disease, 2013, 4, 402-410.	0.7	40
28	Enhanced insulin secretion and insulin sensitivity in young lambs with placental insufficiency-induced intrauterine growth restriction. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 313, R101-R109.	0.9	40
29	Hypoxaemiaâ€induced catecholamine secretion from adrenal chromaffin cells inhibits glucoseâ€stimulated hyperinsulinaemia in fetal sheep. Journal of Physiology, 2012, 590, 5439-5447.	1.3	39
30	Placental Insufficiency Decreases Pancreatic Vascularity and Disrupts Hepatocyte Growth Factor Signaling in the Pancreatic Islet Endothelial Cell in Fetal Sheep. Diabetes, 2015, 64, 555-564.	0.3	39
31	Enhanced insulin secretion responsiveness and islet adrenergic desensitization after chronic norepinephrine suppression is discontinued in fetal sheep. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E58-E64.	1.8	37
32	Glucose Replacement to Euglycemia Causes Hypoxia, Acidosis, and Decreased Insulin Secretion in Fetal Sheep With Intrauterine Growth Restriction. Pediatric Research, 2009, 65, 72-78.	1.1	34
33	Effects of chronic hypoglycemia and euglycemic correction on lysine metabolism in fetal sheep. American Journal of Physiology - Endocrinology and Metabolism, 2009, 296, E879-E887.	1.8	34
34	Effects of bacterial lipopolysaccharide injection on white blood cell counts, hematological variables, and serum glucose, insulin, and cortisol concentrations in ewes fed low- or high-protein diets1. Journal of Animal Science, 2011, 89, 4286-4293.	0.2	34
35	Chronic fetal hypoglycemia inhibits the later steps of stimulus-secretion coupling in pancreatic β-cells. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E1256-E1264.	1.8	32
36	Characterization of glucose-insulin responsiveness and impact of fetal number and sex difference on insulin response in the sheep fetus. American Journal of Physiology - Endocrinology and Metabolism, 2011, 300, E817-E823.	1.8	31

SEAN W LIMESAND

#	Article	IF	CITATIONS
37	Semilunar follicular cycle of an intertidal fish: the Fundulus model. Biology of Reproduction, 1996, 54, 809-818.	1.2	30
38	Developmental Changes in Ovine Myocardial Glucose Transporters and Insulin Signaling Following Hyperthermia-Induced Intrauterine Fetal Growth Restriction. Experimental Biology and Medicine, 2006, 231, 566-575.	1.1	30
39	Increased amino acid supply potentiates glucose-stimulated insulin secretion but does not increase β-cell mass in fetal sheep. American Journal of Physiology - Endocrinology and Metabolism, 2013, 304, E352-E362.	1.8	30
40	Chronically Increased Amino Acids Improve Insulin Secretion, Pancreatic Vascularity, and Islet Size in Growth-Restricted Fetal Sheep. Endocrinology, 2016, 157, 3788-3799.	1.4	29
41	Chronic anemic hypoxemia attenuates glucose-stimulated insulin secretion in fetal sheep. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 312, R492-R500.	0.9	29
42	RNA Sequencing Exposes Adaptive and Immune Responses to Intrauterine Growth Restriction in Fetal Sheep Islets. Endocrinology, 2017, 158, 743-755.	1.4	29
43	Lower oxygen consumption and Complex I activity in mitochondria isolated from skeletal muscle of fetal sheep with intrauterine growth restriction. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E67-E80.	1.8	29
44	Impact of thermal stress on placental function and fetal physiology. Animal Reproduction, 2018, 15, 886-898.	0.4	29
45	Dimming the Powerhouse: Mitochondrial Dysfunction in the Liver and Skeletal Muscle of Intrauterine Growth Restricted Fetuses. Frontiers in Endocrinology, 2021, 12, 612888.	1.5	28
46	Fetal Adrenal Demedullation Lowers Circulating Norepinephrine and Attenuates Growth Restriction but not Reduction of Endocrine Cell Mass in an Ovine Model of Intrauterine Growth Restriction. Nutrients, 2015, 7, 500-516.	1.7	27
47	Structure and transcriptional regulation of the ovine placental lactogen gene. FEBS Journal, 2001, 265, 883-895.	0.2	26
48	Placental Lactogen and Growth Hormone. , 1998, , 461-490.		26
49	Hypothyroidism <i>in utero</i> stimulates pancreatic beta cell proliferation and hyperinsulinaemia in the ovine fetus during late gestation. Journal of Physiology, 2017, 595, 3331-3343.	1.3	25
50	Insulin-like growth factor and fibroblast growth factor expression profiles in growth-restricted fetal sheep pancreas. Experimental Biology and Medicine, 2012, 237, 524-529.	1.1	24
51	Islet adaptations in fetal sheep persist following chronic exposure to high norepinephrine. Journal of Endocrinology, 2017, 232, 285-295.	1.2	24
52	Acute Ischemia Induced by High-Density Culture Increases Cytokine Expression and Diminishes the Function and Viability of Highly Purified Human Islets of Langerhans. Transplantation, 2017, 101, 2705-2712.	0.5	24
53	Real supermodels wear wool: summarizing the impact of the pregnant sheep as an animal model for adaptive fetal programming. Animal Frontiers, 2019, 9, 34-43.	0.8	23
54	Oxygen Perfusion (Persufflation) of Human Pancreata Enhances Insulin Secretion and Attenuates Islet Proinflammatory Signaling. Transplantation, 2019, 103, 160-167.	0.5	23

#	Article	IF	CITATIONS
55	Challenges in nourishing the intrauterine growthâ€restricted foetus – Lessons learned from studies in the intrauterine growthâ€restricted foetal sheep. Acta Paediatrica, International Journal of Paediatrics, 2016, 105, 881-889.	0.7	22
56	Increased Adrenergic Signaling Is Responsible for Decreased Glucose-Stimulated Insulin Secretion in the Chronically Hyperinsulinemic Ovine Fetus. Endocrinology, 2015, 156, 367-376.	1.4	20
57	In vitro characterization of neonatal, juvenile, and adult porcine islet oxygen demand, βâ€cell function, and transcriptomes. Xenotransplantation, 2018, 25, e12432.	1.6	20
58	Postnatal β2 adrenergic treatment improves insulin sensitivity in lambs with IUGR but not persistent defects in pancreatic islets or skeletal muscle. Journal of Physiology, 2019, 597, 5835-5858.	1.3	20
59	Changes in myoblast responsiveness to TNFÎ \pm and IL-6 contribute to decreased skeletal muscle mass in intrauterine growth restricted fetal sheep1. Translational Animal Science, 2018, 2, S44-S47.	0.4	16
60	Sustained hypoxemia in late gestation potentiates hepatic gluconeogenic gene expression but does not activate glucose production in the ovine fetus. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E1-E10.	1.8	16
61	Oxytocin stimulated release of PGF2α and its inhibition by a cyclooxygenase inhibitor and an oxytocin receptor antagonist from equine endometrial cultures. Animal Reproduction Science, 2013, 139, 69-75.	0.5	15
62	Novel activator protein-2α splice-variants function as transactivators of the ovine placental lactogen gene. FEBS Journal, 2001, 268, 2390-2401.	0.2	14
63	Increased pyruvate dehydrogenase activity in skeletal muscle of growth-restricted ovine fetuses. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2019, 317, R513-R520.	0.9	14
64	Chronic pulsatile hyperglycemia reduces insulin secretion and increases accumulation of reactive oxygen species in fetal sheep islets. Journal of Endocrinology, 2012, 212, 327-342.	1.2	13
65	Adrenergic receptor stimulation suppresses oxidative metabolism in isolated rat islets and Min6 cells. Molecular and Cellular Endocrinology, 2018, 473, 136-145.	1.6	13
66	Chronic Adrenergic Signaling Causes Abnormal RNA Expression of Proliferative Genes in Fetal Sheep Islets. Endocrinology, 2018, 159, 3565-3578.	1.4	13
67	Chronically elevated norepinephrine concentrations lower glucose uptake in fetal sheep. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2020, 319, R255-R263.	0.9	13
68	Differential Effects of Chronic Pulsatile versus Chronic Constant Maternal Hyperglycemia on Fetal Pancreatic <i>β</i> -Cells. Journal of Pregnancy, 2012, 2012, 1-8.	1.1	11
69	Augmented glucose production is not contingent on high catecholamines in fetal sheep with IUGR. Journal of Endocrinology, 2021, 249, 195-207.	1.2	11
70	Purα, a Single-Stranded Deoxyribonucleic Acid Binding Protein, Augments Placental Lactogen Gene Transcription. Molecular Endocrinology, 2004, 18, 447-457.	3.7	10
71	30th anniversary for the developmental origins of endocrinology. Journal of Endocrinology, 2019, 242, E1-E4.	1.2	10
72	Genome-wide association study of a thermo-tolerance indicator in pregnant ewes exposed to an artificial heat-stressed environment. Journal of Thermal Biology, 2021, 101, 103095.	1.1	9

#	Article	IF	CITATIONS
73	Effects of oxytocin, lipopolysaccharide (LPS), and polyunsaturated fatty acids on prostaglandin secretion and gene expression in equine endometrial explant cultures. Domestic Animal Endocrinology, 2013, 44, 46-55.	0.8	8
74	Function and expression of sulfonylurea, adrenergic, and glucagonâ€like peptide 1 receptors in isolated porcine islets. Xenotransplantation, 2014, 21, 385-391.	1.6	7
75	Discovery and validation of candidate SNP markers associated to heat stress response in pregnant ewes managed inside a climate-controlled chamber. Tropical Animal Health and Production, 2020, 52, 3457-3466.	0.5	7
76	Heteroâ€bivalent GLPâ€1/Glibenclamide for Targeting Pancreatic βâ€Cells. ChemBioChem, 2014, 15, 135-145.	1.3	5
77	Multivalent activation of GLP-1 and sulfonylurea receptors modulates β-cell second-messenger signaling and insulin secretion. American Journal of Physiology - Cell Physiology, 2019, 316, C48-C56.	2.1	5
78	Pancreatic Islets Exhibit Dysregulated Adaptation of Insulin Secretion after Chronic Epinephrine Exposure. Current Issues in Molecular Biology, 2021, 43, 240-250.	1.0	5
79	Tissue-specific responses that constrain glucose oxidation and increase lactate production with the severity of hypoxemia in fetal sheep. American Journal of Physiology - Endocrinology and Metabolism, 2022, 322, E181-E196.	1.8	5
80	Specificity protein-1 and -3 trans-activate the ovine placental lactogen gene promoter. Molecular and Cellular Endocrinology, 2009, 307, 118-124.	1.6	4
81	Uteroplacental nutrient flux and evidence for metabolic reprogramming during sustained hypoxemia. Physiological Reports, 2021, 9, e15033.	0.7	4
82	Transcriptional regulation in the placenta during normal and compromised fetal growth. Biochemical Society Transactions, 2001, 29, 42-8.	1.6	4
83	Endothelial nitric oxide synthase in uteroplacental vasculature in an ovine model of IUGR. American Journal of Obstetrics and Gynecology, 2003, 189, S193.	0.7	3
84	A Synthetic Heterobivalent Ligand Composed of Glucagon-Like Peptide 1 and Yohimbine Specifically Targets β Cells Within the Pancreas. Molecular Imaging and Biology, 2015, 17, 461-470.	1.3	3
85	Developmental programming: Prenatal testosterone excess disrupts pancreatic islet developmental trajectory in female sheep. Molecular and Cellular Endocrinology, 2020, 518, 110950.	1.6	3
86	Prenatal Oxygen and Glucose Therapy Normalizes Insulin Secretion and Action in Growth Restricted Fetal Sheep. Endocrinology, 2022, , .	1.4	3
87	Aspects of fetoplacental nutrition in intrauterine growth restriction and macrosomia. , 0, , 32-46.		2
88	Remembering development – epigenetic responses to fetal malnutrition. Journal of Physiology, 2010, 588, 1379-1380.	1.3	2
89	Hepatic Lipid Accumulation and Dysregulation Associate with Enhanced Reactive Oxygen Species and Pro-Inflammatory Cytokine in Low-Birth-Weight Goats. Animals, 2022, 12, 766.	1.0	2
90	Insights Into the Progression of β-Cell Dysfunction Caused by Preterm Birth. Endocrinology, 2015, 156, 3494-3495.	1.4	1

SEAN W LIMESAND

#	Article	IF	CITATIONS
91	An Islet-Stabilizing Implant Constructed Using a Preformed Vasculature. Tissue Engineering, 0, , 110306233438005.	4.9	1
92	Consequences of a compromised intrauterine environment on islet function. Journal of Endocrinology, 2010, 206, 335.	1.2	0
93	359: Fetal growth restriction and markers of metabolic dysfunction and inflammation. American Journal of Obstetrics and Gynecology, 2015, 212, S188-S189.	0.7	Ο
94	Fetal Endocrinology. , 2018, , 484-490.		0
95	Gestational Diabetes–Induced Programming of Pancreatic Islets. Endocrinology, 2019, 160, 2117-2118.	1.4	0
96	Classic solutions to a modern problem: exercise training improves metabolic disorders in offspring from fathers on a high fat diet. Journal of Physiology, 2019, 597, 9-10.	1.3	0
97	CATECHOLAMINES INHIBIT INSULIN SECRETION IN SHEEP FETUSES WITH PLACENTAL INSUFFICIENCY AND INTRAUTERINE GROWTH RESTRICTION. Biology of Reproduction, 2007, 77, 126-126.	1.2	0
98	Epigenetic modifications guide maturational processes in rat pancreatic islets. Endocrinology, 2021, , .	1.4	0