List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5196129/publications.pdf Version: 2024-02-01

FANC ZHONC

#	Article	IF	CITATIONS
1	Physical and Antimicrobial Properties of Peppermint Oil Nanoemulsions. Journal of Agricultural and Food Chemistry, 2012, 60, 7548-7555.	2.4	286
2	Preparation and characterization of pullulan–chitosan and pullulan–carboxymethyl chitosan blended films. Food Hydrocolloids, 2013, 30, 82-91.	5.6	231
3	Beta-carotene encapsulated in food protein nanoparticles reduces peroxyl radical oxidation in Caco-2 cells. Food Hydrocolloids, 2015, 43, 31-40.	5.6	215
4	The physicochemical stability and inÂvitro bioaccessibility of beta-carotene in oil-in-water sodium caseinate emulsions. Food Hydrocolloids, 2014, 35, 19-27.	5.6	208
5	Stability and Bioaccessibility of β-Carotene in Nanoemulsions Stabilized by Modified Starches. Journal of Agricultural and Food Chemistry, 2013, 61, 1249-1257.	2.4	205
6	Characterization of tara gum edible films incorporated with bulk chitosan and chitosan nand chitosan nanoparticles: A comparative study. Food Hydrocolloids, 2015, 44, 309-319.	5.6	201
7	Study on starch-protein interactions and their effects on physicochemical and digestible properties of the blends. Food Chemistry, 2019, 280, 51-58.	4.2	195
8	Physicochemical and morphological properties of size-controlled chitosan–tripolyphosphate nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 465, 137-146.	2.3	168
9	Functional properties of Maillard reaction products of rice protein hydrolysates with mono-, oligo- and polysaccharides. Food Hydrocolloids, 2013, 30, 53-60.	5.6	158
10	Functionality and nutritional aspects of microcrystalline cellulose in food. Carbohydrate Polymers, 2017, 172, 159-174.	5.1	146
11	Current progress in the utilization of native and modified legume proteins as emulsifiers and encapsulants – A review. Food Hydrocolloids, 2018, 76, 2-16.	5.6	141
12	The effect of chemical treatment on the InÂvitro hypoglycemic properties of rice bran insoluble dietary fiber. Food Hydrocolloids, 2016, 52, 699-706.	5.6	128
13	Bactericidal action mechanism of negatively charged food grade clove oil nanoemulsions. Food Chemistry, 2016, 197, 75-83.	4.2	124
14	Controlled-release of tea polyphenol from gelatin films incorporated with different ratios of free/nanoencapsulated tea polyphenols into fatty food simulants. Food Hydrocolloids, 2017, 62, 212-221.	5.6	117
15	Encapsulation of vitamin E: Effect of physicochemical properties of wall material on retention and stability. Carbohydrate Polymers, 2015, 124, 172-179.	5.1	114
16	Study on the emulsifying stability and interfacial adsorption of pea proteins. Food Hydrocolloids, 2019, 88, 247-255.	5.6	110
17	Preparation of Gelatin Films Incorporated with Tea Polyphenol Nanoparticles for Enhancing Controlled-Release Antioxidant Properties. Journal of Agricultural and Food Chemistry, 2015, 63, 3987-3995.	2.4	109
18	Functional properties of the Maillard reaction products of rice protein with sugar. Food Chemistry, 2009, 117, 69-74.	4.2	106

#	Article	IF	CITATIONS
19	Rice Starch, Amylopectin, and Amylose:Â Molecular Weight and Solubility in Dimethyl Sulfoxide-Based Solvents. Journal of Agricultural and Food Chemistry, 2006, 54, 2320-2326.	2.4	105
20	Study of combined effects of glycerol and transglutaminase on properties of gelatin films. Food Hydrocolloids, 2017, 65, 1-9.	5.6	105
21	Preparation of chitosan films by neutralization for improving their preservation effects on chilled meat. Food Hydrocolloids, 2019, 90, 50-61.	5.6	103
22	Protective approaches and mechanisms of microencapsulation to the survival of probiotic bacteria during processing, storage and gastrointestinal digestion: A review. Critical Reviews in Food Science and Nutrition, 2019, 59, 2863-2878.	5.4	102
23	Cellular Uptake of β-Carotene from Protein Stabilized Solid Lipid Nanoparticles Prepared by Homogenization–Evaporation Method. Journal of Agricultural and Food Chemistry, 2014, 62, 1096-1104.	2.4	100
24	Improvement of the water resistance and ductility of gelatin film by zein. Food Hydrocolloids, 2020, 105, 105804.	5.6	100
25	In vitro hypoglycemic and cholesterol lowering effects of dietary fiber prepared from cocoa (Theobroma cacao L.) shells. Food and Function, 2012, 3, 1044.	2.1	97
26	Physicochemical and thermomechanical characterization of tara gum edible films: Effect of polyols as plasticizers. Carbohydrate Polymers, 2014, 111, 359-365.	5.1	97
27	Effect of relative humidity on the store stability of spray-dried beta-carotene nanoemulsions. Food Hydrocolloids, 2013, 33, 225-233.	5.6	96
28	Tailoring physical properties of transglutaminase-modified gelatin films by varying drying temperature. Food Hydrocolloids, 2016, 58, 20-28.	5.6	96
29	Controlled Release of β-Carotene in β-Lactoglobulin–Dextran-Conjugated Nanoparticles' in Vitro Digestion and Transport with Caco-2 Monolayers. Journal of Agricultural and Food Chemistry, 2014, 62, 8900-8907.	2.4	93
30	Paste viscosity of rice starches of different amylose content and carboxymethylcellulose formed by dry heating and the physical properties of their films. Food Chemistry, 2008, 109, 616-623.	4.2	92
31	Effect of degree of octenyl succinic anhydride (OSA) substitution on the digestion of emulsions and the bioaccessibility of β-carotene in OSA-modified-starch-stabilized-emulsions. Food Hydrocolloids, 2018, 84, 303-312.	5.6	89
32	Properties and Stability of Spray-Dried and Freeze-Dried Microcapsules Co-Encapsulated with Fish Oil, Phytosterol Esters, and Limonene. Drying Technology, 2013, 31, 707-716.	1.7	87
33	Factors affecting the bioaccessibility of β-carotene in lipid-based microcapsules: Digestive conditions, the composition, structure and physical state of microcapsules. Food Hydrocolloids, 2018, 77, 187-203.	5.6	86
34	Controlled release of antioxidants from active food packaging: A review. Food Hydrocolloids, 2021, 120, 106992.	5.6	83
35	Beta-Carotene Chemical Stability in Nanoemulsions Was Improved by Stabilized with Beta-Lactoglobulin–Catechin Conjugates through Free Radical Method. Journal of Agricultural and Food Chemistry, 2015, 63, 297-303.	2.4	82
36	Effect of sodium acetate and drying temperature on physicochemical and thermomechanical properties of gelatin films. Food Hydrocolloids, 2015, 45, 140-149.	5.6	76

#	Article	IF	CITATIONS
37	Preparation of Pickering emulsions with short, medium and long chain triacylglycerols stabilized by starch nanocrystals and their in vitro digestion properties. RSC Advances, 2016, 6, 99496-99508.	1.7	76
38	Chitosan/sulfobutylether-β-cyclodextrin nanoparticles as a potential approach for tea polyphenol encapsulation. Food Hydrocolloids, 2016, 57, 291-300.	5.6	75
39	Film-forming properties of guar gum, tara gum and locust bean gum. Food Hydrocolloids, 2020, 98, 105007.	5.6	72
40	The effect of high moisture heat-acid treatment on the structure and digestion property of normal maize starch. Food Chemistry, 2014, 159, 222-229.	4.2	69
41	Effect of dry heat treatment with xanthan on waxy rice starch. Carbohydrate Polymers, 2013, 92, 1647-1652.	5.1	68
42	The effect of rice variety and starch isolation method on the pasting and rheological properties of rice starch pastes. Food Hydrocolloids, 2009, 23, 406-414.	5.6	66
43	Interactions in starch co-gelatinized with phenolic compound systems: Effect of complexity of phenolic compounds and amylose content of starch. Carbohydrate Polymers, 2020, 247, 116667.	5.1	64
44	Influence of OSA-starch on the physico chemical characteristics of flax seed oil-eugenol nanoemulsions. Food Hydrocolloids, 2017, 66, 365-377.	5.6	61
45	Physicochemical properties of β-carotene and eugenol co-encapsulated flax seed oil powders using OSA starches as wall material. Food Hydrocolloids, 2017, 73, 274-283.	5.6	61
46	Protection of heat-sensitive probiotic bacteria during spray-drying byÂsodium caseinate stabilized fat particles. Food Hydrocolloids, 2015, 51, 459-467.	5.6	60
47	Effect of aging treatment on the physicochemical properties of collagen films. Food Hydrocolloids, 2019, 87, 436-447.	5.6	58
48	Enzymatic degradation and bioaccessibility of protein encapsulated β-carotene nano-emulsions during in vitro gastro-intestinal digestion. Food Hydrocolloids, 2020, 100, 105177.	5.6	57
49	Effects of calcium on lipid digestion in nanoemulsions stabilized by modified starch: Implications for bioaccessibility of Î ² -carotene. Food Hydrocolloids, 2017, 73, 184-193.	5.6	56
50	Effects of Lipids on in Vitro Release and Cellular Uptake of β-Carotene in Nanoemulsion-Based Delivery Systems. Journal of Agricultural and Food Chemistry, 2015, 63, 10831-10837.	2.4	55
51	Structural and physico-chemical properties of insoluble rice bran fiber: effect of acid–base induced modifications. RSC Advances, 2015, 5, 79915-79923.	1.7	55
52	Effect of transglutaminase crosslinking on solubility property and mechanical strength of gelatin-zein composite films. Food Hydrocolloids, 2021, 116, 106649.	5.6	54
53	Incorporation of polysaccharides into sodium caseinate-low melting point fat microparticles improves probiotic bacterial survival during simulated gastrointestinal digestion and storage. Food Hydrocolloids, 2016, 54, 328-337.	5.6	50
54	Improved survival of Lactobacillus zeae LB1 in a spray dried alginate-protein matrix. Food Hydrocolloids, 2018, 78, 100-108.	5.6	50

#	Article	IF	CITATIONS
55	The resilience of nanocrystalline cellulose viscosity to simulated digestive processes and its influence on glucose diffusion. Carbohydrate Polymers, 2018, 200, 436-445.	5.1	49
56	Stabilizing Oil-in-Water Emulsion with Amorphous and Granular Octenyl Succinic Anhydride Modified Starches. Journal of Agricultural and Food Chemistry, 2018, 66, 9301-9308.	2.4	48
57	Physicochemical stability of β-carotene and α-tocopherol enriched nanoemulsions: Influence of carrier oil, emulsifier and antioxidant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529, 550-559.	2.3	47
58	Niosomes Consisting of Tween-60 and Cholesterol Improve the Chemical Stability and Antioxidant Activity of (â^')-Epigallocatechin Gallate under Intestinal Tract Conditions. Journal of Agricultural and Food Chemistry, 2016, 64, 9180-9188.	2.4	46
59	Self-Assembled Micelles Based on OSA-Modified Starches for Enhancing Solubility of β-Carotene: Effect of Starch Macromolecular Architecture. Journal of Agricultural and Food Chemistry, 2019, 67, 6614-6624.	2.4	46
60	Regulation of nano-encapsulated tea polyphenol release from gelatin films with different Bloom values. Food Hydrocolloids, 2020, 108, 106045.	5.6	46
61	Distribution of octenylsuccinic groups in modified waxy maize starch: An analysis at granular level. Food Hydrocolloids, 2018, 84, 210-218.	5.6	43
62	Improvement in physicochemical properties of collagen casings by glutaraldehyde cross-linking and drying temperature regulating. Food Chemistry, 2020, 318, 126404.	4.2	42
63	Characterization of the key aroma compounds in aged Zhenjiang aromatic vinegar by gas chromatography-olfactometry-mass spectrometry, quantitative measurements, aroma recombination and omission experiments. Food Research International, 2020, 136, 109434.	2.9	39
64	Formation and characterisation of mint oil/S and CS/water microemulsions. Food Chemistry, 2009, 115, 539-544.	4.2	38
65	Tailoring physicochemical properties of chitosan films and their protective effects on meat by varying drying temperature. Carbohydrate Polymers, 2019, 212, 150-159.	5.1	38
66	Effects of maltodextrin glycosylation following limited enzymatic hydrolysis on the functional and conformational properties of soybean protein isolate. European Food Research and Technology, 2014, 238, 957-968.	1.6	37
67	Correlating chemical parameters of controlled oxidation tallow to gas chromatography–mass spectrometry profiles and e-nose responses using partial least squares regression analysis. Sensors and Actuators B: Chemical, 2010, 147, 660-668.	4.0	36
68	Interactions between octenyl-succinic-anhydride-modified starches and calcium in oil-in-water emulsions. Food Hydrocolloids, 2018, 77, 30-39.	5.6	36
69	Influence of alkalization treatment on the color quality and the total phenolic and anthocyanin contents in cocoa powder. Food Science and Biotechnology, 2014, 23, 59-63.	1.2	34
70	Insight into the multi-scale structure changes and mechanism of corn starch modulated by different structural phenolic acids during retrogradation. Food Hydrocolloids, 2022, 128, 107581.	5.6	34
71	Enhancing the prebiotic effect of cellulose biopolymer in the gut by physical structuring via particle size manipulation. Food Research International, 2020, 131, 108935.	2.9	33
72	Paired preference testing: False preferences and disruptive protocols. Food Science and Biotechnology, 2016, 25, 1-10.	1.2	32

#	Article	IF	CITATIONS
73	Inhibition of α-amylase and amyloglucosidase by nanocrystalline cellulose and spectroscopic analysis of their binding interaction mechanism. Food Hydrocolloids, 2019, 90, 341-352.	5.6	32
74	Formation pathways and precursors of furfural during Zhenjiang aromatic vinegar production. Food Chemistry, 2021, 354, 129503.	4.2	32
75	Modulating physicochemical properties of collagen films by cross-linking with glutaraldehyde at varied pH values. Food Hydrocolloids, 2022, 124, 107270.	5.6	32
76	Properties of edible films based on pullulan–chitosan blended film-forming solutions at different pH. RSC Advances, 2015, 5, 105844-105850.	1.7	31
77	Effect of pre-treatment temperatures on the film-forming properties of collagen fiber dispersions. Food Hydrocolloids, 2020, 107, 105326.	5.6	31
78	Use of encapsulated bacteriophages to enhance farm to fork food safety. Critical Reviews in Food Science and Nutrition, 2017, 57, 2801-2810.	5.4	29
79	Strategies for Fabricating Protein Films for Biomaterial Applications. Advanced Sustainable Systems, 2021, 5, .	2.7	28
80	Facile preparation of collagen fiber–glycerol-carboxymethyl cellulose composite film by immersing method. Carbohydrate Polymers, 2020, 229, 115429.	5.1	27
81	pH and temperature stability of (â^')-epigallocatechin-3-gallate-β-cyclodextrin inclusion complex-loaded chitosan nanoparticles. Carbohydrate Polymers, 2016, 149, 340-347.	5.1	26
82	Physical properties and biological fate of OSA-modified-starch-stabilized emulsions containing β-carotene: Effect of calcium and pH. Food Hydrocolloids, 2018, 77, 549-556.	5.6	26
83	Effect of the co-existing and excipient oil on the bioaccessibility of β-carotene loaded oil-free nanoparticles. Food Hydrocolloids, 2020, 106, 105847.	5.6	26
84	Effects of Alcalase/Protease N treatments on rice starch isolation and their effects on its properties. Food Chemistry, 2009, 114, 821-828.	4.2	25
85	Optimization of key aroma compounds for dog food attractant. Animal Feed Science and Technology, 2017, 225, 173-181.	1.1	25
86	Preparation of Fish Skin Gelatin-Based Nanofibers Incorporating Cinnamaldehyde by Solution Blow Spinning. International Journal of Molecular Sciences, 2018, 19, 618.	1.8	24
87	Characteristics of annealed glutinous rice flour and its formation of fast-frozen dumplings. Journal of Cereal Science, 2018, 79, 106-112.	1.8	23
88	Fabrication of films with tailored properties by regulating the swelling of collagen fiber through pH adjustment. Food Hydrocolloids, 2020, 108, 106016.	5.6	23
89	Cellulosic fraction of rice bran fibre alters the conformation and inhibits the activity of porcine pancreatic lipase. Journal of Functional Foods, 2015, 19, 39-48.	1.6	22
90	Polysaccharide gel coating of the leaves of Brasenia schreberiÂlowersÂplasmaÂcholesterol in hamsters. Journal of Traditional and Complementary Medicine, 2015, 5, 56-61.	1.5	22

#	Article	IF	CITATIONS
91	Differentiation of flue-cured tobacco leaves in different positions based on neutral volatiles with principal component analysis (PCA). European Food Research and Technology, 2012, 235, 745-752.	1.6	21
92	Evaluation of mechanical and water barrier properties of transglutaminase crossâ€linked zein films incorporated with oleic acid. International Journal of Food Science and Technology, 2016, 51, 1159-1167.	1.3	21
93	Preparation of Zein Fibers Using Solution Blow Spinning Method. Journal of Food Science, 2016, 81, N3015-N3025.	1.5	21
94	Degradation of Vitamin E in Nanoemulsions during Storage as Affected by Temperature, Light and Darkness. International Journal of Food Engineering, 2015, 11, 199-206.	0.7	20
95	Characterization of film-forming solutions and films incorporating free and nanoencapsulated tea polyphenol prepared by gelatins with different Bloom values. Food Hydrocolloids, 2017, 72, 381-388.	5.6	20
96	Versatile preparation of spherically and mechanically controllable liquid-core-shell alginate-based bead through interfacial gelation. Carbohydrate Polymers, 2020, 236, 115980.	5.1	20
97	Effect of calcium ions on the freeze-drying survival of probiotic encapsulated in sodium alginate. Food Hydrocolloids, 2022, 130, 107668.	5.6	20
98	Effect of Gallic acid on mechanical and water barrier properties of zein-oleic acid composite films. Journal of Food Science and Technology, 2016, 53, 2227-2235.	1.4	19
99	Antimicrobial Carvacrol in Solution Blowâ€5pun Fishâ€5kin Gelatin Nanofibers. Journal of Food Science, 2018, 83, 984-991.	1.5	19
100	Interfacial Activity and Self-Assembly Behavior of Dissolved and Granular Octenyl Succinate Anhydride Starches. Langmuir, 2019, 35, 4702-4709.	1.6	19
101	The effect of viscous soluble dietary fiber on nutrient digestion and metabolic responses â: In vitro digestion process. Food Hydrocolloids, 2020, 107, 105971.	5.6	19
102	Analysis of kinetic parameters and mechanisms of nanocrystalline cellulose inhibition of α-amylase and α-glucosidase in simulated digestion of starch. Food and Function, 2020, 11, 4719-4731.	2.1	19
103	Konjac glucomannan molecular and rheological properties that delay gastric emptying and improve the regulation of appetite. Food Hydrocolloids, 2021, 120, 106894.	5.6	19
104	The effect of sodium alginate on nutrient digestion and metabolic responses during both in vitro and in vivo digestion process. Food Hydrocolloids, 2020, 107, 105304.	5.6	18
105	Modulating storage stability of binary gel by adjusting the ratios of starch and kappa-carrageenan. Carbohydrate Polymers, 2021, 268, 118264.	5.1	18
106	Effect of encapsulation on β-carotene absorption and metabolism in mice. Food Hydrocolloids, 2021, 121, 107009.	5.6	18
107	A cross-cultural analysis of children's vegetable preferences. Appetite, 2019, 142, 104346.	1.8	17
108	Characterization and physicochemical properties analysis of konjac glucomannan: Implications for structure-properties relationships. Food Hydrocolloids, 2021, 120, 106818.	5.6	17

#	Article	IF	CITATIONS
109	Effect of high concentrated sucrose on the stability of OSA-starch-based beta-carotene microcapsules. Food Hydrocolloids, 2021, 113, 105472.	5.6	16
110	Collagen peptides with DPP-IV inhibitory activity from sheep skin and their stability to in vitro gastrointestinal digestion. Food Bioscience, 2021, 42, 101161.	2.0	16
111	The hydration rate of konjac glucomannan after consumption affects its in vivo glycemic response and appetite sensation and in vitro digestion characteristics. Food Hydrocolloids, 2022, 122, 107102.	5.6	16
112	The Isolation of Rice Starch with Food Grade Proteases Combined with Other Treatments. Food Science and Technology International, 2008, 14, 215-224.	1.1	15
113	Influence of various factors on formation of 2,3-dihydro-3,5-dihydroxy-6-methyl-4(H)-pyran-4-one (DDMP) in a solid-state model system of Maillard reaction. European Food Research and Technology, 2014, 239, 31-40.	1.6	15
114	Characterizations on the Stability and Release Properties of \hat{I}^2 -ionone Loaded Thermosensitive Liposomes (TSLs). Journal of Agricultural and Food Chemistry, 2018, 66, 8336-8345.	2.4	15
115	Remodeling of β-Carotene-Encapsulated Protein-Stabilized Nanoparticles during Gastrointestinal Digestion <i>In Vitro</i> and in Mice. Journal of Agricultural and Food Chemistry, 2020, 68, 15468-15477.	2.4	15
116	Hydrogel beads for designing future foods: Structures, mechanisms, applications, and challenges. Food Hydrocolloids for Health, 2022, 2, 100073.	1.6	15
117	Solution Blow Spinning of Foodâ€Grade Gelatin Nanofibers. Journal of Food Science, 2017, 82, 1402-1411.	1.5	14
118	Adsorption mechanism modeling using lead (Pb) sorption data on modified rice bran-insoluble fiber as universal approach to assess other metals toxicity. International Journal of Food Properties, 2019, 22, 1397-1410.	1.3	14
119	Effect of Microbial Fermentation on the Fishy-Odor Compounds in Kelp (Laminaria japonica). Foods, 2021, 10, 2532.	1.9	14
120	Paired Preference Tests with Reversed Hidden Demand Characteristics. Journal of Sensory Studies, 2014, 29, 149-158.	0.8	13
121	The dual effect of shellac on survival of spray-dried Lactobacillus rhamnosus GG microcapsules. Food Chemistry, 2022, 389, 132999.	4.2	13
122	Effect of Different Degree of Deacetylation, Molecular Weight of Chitosan and Palm Stearin and Palm Kernel Olein Concentration on Chitosan as Edible Packaging for Cherry Tomato. Journal of Food Processing and Preservation, 2017, 41, e13090.	0.9	12
123	Effect of beta-carotene status in microcapsules on its in vivo bioefficacy and in vitro bioaccessibility. Food Hydrocolloids, 2020, 106, 105848.	5.6	12
124	Calcium spraying for fabricating collagen-alginate composite films with excellent wet mechanical properties. Food Hydrocolloids, 2022, 124, 107340.	5.6	12
125	Dynamic characteristics of sweetness and bitterness and their correlation with chemical structures for six steviol glycosides. Food Research International, 2022, 151, 110848.	2.9	12
126	Customization of liquid-core sodium alginate beads by molecular engineering. Carbohydrate Polymers, 2022, 284, 119047.	5.1	12

#	Article	IF	CITATIONS
127	Formation and Stability of Vitamin E Enriched Nanoemulsions Stabilized by Octenyl Succinic Anhydride Modified Starch. International Journal of Food Engineering, 2014, 10, 633-643.	0.7	11
128	Effect of drying temperature and pH alteration on mechanical and water barrier properties of transglutaminase cross linked zein–oleic acid composite films. LWT - Food Science and Technology, 2016, 65, 518-531.	2.5	11
129	In vivo oral breakdown properties of whey protein gels containing OSA-modified-starch-stabilized emulsions: Impact of gel structure. Food Hydrocolloids, 2021, 113, 106361.	5.6	11
130	Effect of Type of Plasticizers on Mechanical and Water Barrier Properties of Transglutaminase Cross-Linked Zein–Oleic Acid Composite Films. International Journal of Food Engineering, 2016, 12, 365-376.	0.7	10
131	Quantitative optimization and assessments of supplemented tea polyphenols in dry dog food considering palatability, levels of serum oxidative stress biomarkers and fecal pathogenic bacteria. RSC Advances, 2016, 6, 16802-16807.	1.7	10
132	The 9-point hedonic scale: Using R-Index Preference Measurement to compute effect size and eliminate artifactual ties. Food Research International, 2020, 133, 109140.	2.9	10
133	Formation, structural characteristics and physicochemical properties of beeswax oleogels prepared with tea polyphenol loaded gelators. Food and Function, 2021, 12, 1662-1671.	2.1	10
134	Formula Optimization of Emulsifiers for Preparation of Multiple Emulsions Based on Artificial Neural Networks. Journal of Dispersion Science and Technology, 2008, 29, 319-326.	1.3	9
135	Study on the effect of potassium lactate additive on the combustion behavior and mainstream smoke of cigarettes. Journal of Thermal Analysis and Calorimetry, 2014, 115, 1733-1751.	2.0	9
136	The influence of exogenous fiber on the generation of carbonyl compounds in reconstituted tobacco sheet. Journal of Analytical and Applied Pyrolysis, 2014, 105, 227-233.	2.6	9
137	Characterization of the Key Aroma Compounds in Dog Foods by Gas Chromatography–Mass Spectrometry, Acceptance Test, and Preference Test. Journal of Agricultural and Food Chemistry, 2020, 68, 9195-9204.	2.4	9
138	The improvement of texture properties and storage stability for kappa carrageenan in developing vegan gummy candies. Journal of the Science of Food and Agriculture, 2022, 102, 3693-3702.	1.7	9
139	Influence of Physicochemical Characteristics on the Effective Moisture Diffusivity in Tobacco. International Journal of Food Properties, 2015, 18, 690-698.	1.3	8
140	Influence of softwood cellulose fiber and chitosan on the film-forming properties of collagen fiber. Food Bioscience, 2021, 42, 101056.	2.0	8
141	The generation of carbon monoxide and carbonyl compounds in reconstituted tobacco sheet. Journal of Thermal Analysis and Calorimetry, 2014, 115, 961-970.	2.0	7
142	Glycation inhibits trichloroacetic acid (TCA)-induced whey protein precipitation. European Food Research and Technology, 2015, 240, 847-852.	1.6	7
143	Mechanical and Water Barrier Properties of Zein–Corn Starch Composite Films as Affected by Gallic Acid Treatment. International Journal of Food Engineering, 2016, 12, 773-781.	0.7	7
144	Influencers of children's vegetable liking—A look from a social and cultural perspective. Journal of Sensory Studies, 2019, 34, e12534.	0.8	7

#	Article	IF	CITATIONS
145	Development of (5-(4,6-dichlorotriazinyl) aminofluorescein) DTAF-labelled polysaccharides for characterization of microstructure and phase distribution of composite hydrogel visualization of hydrogels using CLSM. Food Bioscience, 2021, 41, 100909.	2.0	7
146	Effect of exogenous softwood on thermal decomposition of reconstituted tobacco sheet. Journal of Thermal Analysis and Calorimetry, 2014, 117, 893-900.	2.0	6
147	Pairing Detection of Offâ€Flavor in Orange Juice with Preference Tests. Journal of Sensory Studies, 2015, 30, 259-268.	0.8	6
148	Applying Disruptive Preference Test Protocols to Increase the Number of "No Preference―Responses in the Placebo Pair, Using Chinese Consumers. Journal of Food Science, 2016, 81, S2233-9.	1.5	6
149	Impact of consumption frequency on generations of sensory product profiles using CATA questions: Case studies with two drink categories. Food Research International, 2020, 137, 109378.	2.9	6
150	An Aromatic Lexicon Development for Soymilks. International Journal of Food Properties, 2015, 18, 125-136.	1.3	5
151	Is the absolute scaling model the basis for the 9-point hedonic scale? Evidence from Poulton's Stimulus Range Equalizing Bias. Food Quality and Preference, 2021, 89, 104153.	2.3	5
152	Consumers with high frequency of â€just about right' in JAR scales may use lower cognitive effort: Evidence from the concurrent 9-point hedonic scale and CATA question. Food Research International, 2021, 143, 110285.	2.9	5
153	Evaluation of Cellular Absorption and Metabolism of β-Carotene Loaded in Nanocarriers after <i>In Vitro</i> Digestion. Journal of Agricultural and Food Chemistry, 2021, 69, 9383-9394.	2.4	5
154	Study on the Pasting Properties of Indica and Japonica Waxy Rice. Foods, 2022, 11, 1132.	1.9	5
155	Thermo-mechanical response of liquid-core beads as affected by alginate molecular structure. Food Hydrocolloids, 2022, 131, 107777.	5.6	5
156	Quantitative determination of the major aroma compounds in cigarette smoke condensates using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry based on direct solvent extraction and comparison with simultaneous distillation extraction. Analytical Methods, 2013, 5, 3557.	1.3	4
157	Effects of common ammonium salt on the thermal behavior of reconstituted tobacco sheet. Journal of Thermal Analysis and Calorimetry, 2014, 118, 1747-1753.	2.0	4
158	Is the Discrepancy between Numbers Derived from Verbal and Numerical Protocols for 9â€₽oint Hedonic Scales an Artifact of Product Choice?. Journal of Sensory Studies, 2015, 30, 269-279.	0.8	4
159	Quantitative optimization and assessments of supplemented fructooligosaccharides in dry dog food. RSC Advances, 2016, 6, 110047-110052.	1.7	4
160	Improvement on properties of collagen casing films by aging treatment after oil coating. Food Packaging and Shelf Life, 2020, 25, 100519.	3.3	4
161	Microcrystalline cellulose and nanocrystalline cellulose. , 2021, , 509-536.		4
162	High protein and high oil emulsions: Phase diagram, stability and interfacial adsorption. LWT - Food Science and Technology, 2022, 153, 112464.	2.5	4

#	Article	IF	CITATIONS
163	Revealing substitution priority and pattern of octenylsuccinic groups along the starch chain under a continuous mode. Food Chemistry, 2022, 388, 132909.	4.2	4
164	Paired preference tests and placebo placement: 2. Unraveling the effects of stimulus variance. Food Research International, 2020, 136, 109447.	2.9	1
165	Developing The Triadic Preference Test: A Mystery Solved And A Bias Avoided. Food Quality and Preference, 2022, , 104669.	2.3	0