Frank Sonntag

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5195998/publications.pdf

Version: 2024-02-01

39 papers 2,407 citations

430874 18 h-index 36 g-index

40 all docs

40 docs citations

40 times ranked

3223 citing authors

#	Article	IF	CITATIONS
1	A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab on A Chip, 2015, 15, 2688-2699.	6.0	662
2	A dynamic multi-organ-chip for long-term cultivation and substance testing proven by 3D human liver and skin tissue co-culture. Lab on A Chip, 2013, 13, 3538.	6.0	396
3	Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors. Sensors and Actuators B: Chemical, 2012, 174, 292-298.	7.8	218
4	Chip-based human liver–intestine and liver–skin co-cultures – A first step toward systemic repeated dose substance testing in vitro. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 95, 77-87.	4.3	171
5	Integrating biological vasculature into a multi-organ-chip microsystem. Lab on A Chip, 2013, 13, 3588.	6.0	155
6	â€~Human-on-a-chip' Developments: A Translational Cutting-edge Alternative to Systemic Safety Assessment and Efficiency Evaluation of Substances in Laboratory Animals and Man?. ATLA Alternatives To Laboratory Animals, 2012, 40, 235-257.	1.0	153
7	Fabrication of porous scaffolds by three-dimensional plotting of a pasty calcium phosphate bone cement under mild conditions. Journal of Tissue Engineering and Regenerative Medicine, 2014, 8, 682-693.	2.7	108
8	Well-ordered biphasic calcium phosphate–alginate scaffolds fabricated by multi-channel 3D plotting under mild conditions. Journal of Materials Chemistry B, 2013, 1, 4088.	5.8	88
9	Design and prototyping of a chip-based multi-micro-organoid culture system for substance testing, predictive to human (substance) exposure. Journal of Biotechnology, 2010, 148, 70-75.	3.8	62
10	Enhanced structural maturation of human induced pluripotent stem cell-derived cardiomyocytes under a controlled microenvironment in a microfluidic system. Acta Biomaterialia, 2020, 102, 273-286.	8.3	48
11	Surface plasmon resonance platform technology for multiâ€parameter analyses on polymer chips. Engineering in Life Sciences, 2011, 11, 566-572.	3.6	41
12	Detection of soluble ERBB2 in breast cancer cell lysates using a combined label-free/fluorescence platform based on Bloch surface waves. Biosensors and Bioelectronics, 2017, 92, 125-130.	10.1	41
13	Label-Free Detection of Tumor Angiogenesis Biomarker Angiopoietin 2 Using Bloch Surface Waves on One Dimensional Photonic Crystals. Journal of Lightwave Technology, 2015, 33, 3385-3393.	4.6	26
14	DNA microarrays for hybridization detection by surface plasmon resonance spectroscopy. Biosensors and Bioelectronics, 2010, 26, 1543-1547.	10.1	25
15	Bloch surface wave label-free and fluorescence platform for the detection of VEGF biomarker in biological matrices. Sensors and Actuators B: Chemical, 2018, 255, 2143-2150.	7.8	25
16	A compact and rapid aptasensor platform based on surface plasmon resonance. Engineering in Life Sciences, 2011, 11, 573-579.	3.6	20
17	â€~Phytochip': On-chip detection of phytopathogenic RNA viruses by a new surface plasmon resonance platform. Journal of Virological Methods, 2013, 189, 80-86.	2.1	19
18	Bloch surface wave enhanced biosensor for the direct detection of Angiopoietin-2 tumor biomarker in human plasma. Biomedical Optics Express, 2018, 9, 529.	2.9	19

#	Article	IF	Citations
19	Detection of miRNA using a surface plasmon resonance biosensor and antibody amplification. Current Directions in Biomedical Engineering, 2016, 2, 135-138.	0.4	12
20	A novel technique based on Bloch surface waves sustained by one-dimensional photonic crystals to probe mass transport in a microfluidic channel. Sensors and Actuators B: Chemical, 2017, 247, 532-539.	7.8	11
21	Surface Modification of Polymers by using Excimer Laser for Biomedical Applications. Plasma Processes and Polymers, 2007, 4, S416-S418.	3.0	10
22	Bloch Surface Waves Biosensors for High Sensitivity Detection of Soluble ERBB2 in a Complex Biological Environment. Biosensors, 2017, 7, 33.	4.7	10
23	Hypoxia-on-a-chip. Current Directions in Biomedical Engineering, 2016, 2, 71-75.	0.4	9
24	Ultrasensitive SPR detection of miRNAâ€93 using antibodyâ€enhanced and enzymatic signal amplification. Engineering in Life Sciences, 2017, 17, 1264-1270.	3.6	8
25	Design, characterization, and modeling of microcirculation systems with integrated oxygenators. Journal of Sensors and Sensor Systems, 2016, 5, 221-228.	0.9	8
26	Multilayer-based lab-on-a-chip systems for perfused cell-based assays. Advanced Optical Technologies, 2014, 3, 515-521.	1.7	7
27	Universal Micromachining Platform and Basic Technologies for the Manufacture and Marking of Microphysiological Systems. Micromachines, 2017, 8, 246.	2.9	7
28	Detection and identification of <i>Staphylococcus aureus</i> using magnetic particle enhanced surface plasmon spectroscopy. Engineering in Life Sciences, 2018, 18, 263-268.	3.6	7
29	Multiple method micromachining laser platform for fabricating anti-counterfeit elements with multiple-scaled features. Optics and Laser Technology, 2019, 115, 465-476.	4.6	7
30	Biosensing platform combining label-free and labelled analysis using Bloch surface waves. , 2015, , .		6
31	Label-Free Monitoring of Human IgG/Anti-IgG Recognition Using Bloch Surface Waves on 1D Photonic Crystals. Biosensors, 2018, 8, 71.	4.7	6
32	Purification and immunodetection of the complete recombinant HER-2[neu] receptor produced in yeast. Protein Expression and Purification, 2015, 105, 61-70.	1.3	5
33	3D printing – a key technology for tailored biomedical cell culture lab ware. Current Directions in Biomedical Engineering, 2016, 2, 105-108.	0.4	4
34	A microphysiological system to investigate the pressure dependent filtration at an artificial glomerular kidney barrier. Current Directions in Biomedical Engineering, 2019, 5, 389-391.	0.4	4
35	Multilayer based lab-on-a-chip-systems for substance testing. , 2015, , .		3
36	Closed-loop control system for well-defined oxygen supply in micro-physiological systems. Current Directions in Biomedical Engineering, 2017, 3, 363-366.	0.4	1

#	Article	IF	CITATIONS
37	Universal LIMS based platform for the automated processing of cell-based assays. Current Directions in Biomedical Engineering, 2019, 5, 437-439.	0.4	1
38	Microphysiological system for heart tissue - going from 2D to 3D culture. Current Directions in Biomedical Engineering, 2019, 5, 269-272.	0.4	0
39	New joining and automation approaches for multilayer-based manufacturing of complex, customized microsystems. , 2022, , .		0