Liangxu Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5195815/publications.pdf

Version: 2024-02-01

51	3,069	27 h-index	48
papers	citations		g-index
52	52	52	5032
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes. Chemical Communications, 2012, 48, 10177.	2.2	383
2	Fabrication and Luminescence of Monolayered Boron Nitride Quantum Dots. Small, 2014, 10, 60-65.	5.2	196
3	Nitrogen/sulfur dual-doping of reduced graphene oxide harvesting hollow ZnSnS3 nano-microcubes with superior sodium storage. Nano Energy, 2019, 57, 414-423.	8.2	194
4	Two-dimensional transition metal dichalcogenides in supercapacitors and secondary batteries. Energy Storage Materials, 2019, 19, 408-423.	9.5	189
5	Fabrication of Luminescent Monolayered Tungsten Dichalcogenides Quantum Dots with Giant Spin-Valley Coupling. ACS Nano, 2013, 7, 8214-8223.	7.3	181
6	Engineered 2D Transition Metal Dichalcogenides—A Vision of Viable Hydrogen Evolution Reaction Catalysis. Advanced Energy Materials, 2020, 10, 1903870.	10.2	169
7	Biocompatibility and toxicity of graphene quantum dots for potential application in photodynamic therapy. Nanomedicine, 2018, 13, 1923-1937.	1.7	150
8	Sulfur-Depleted Monolayered Molybdenum Disulfide Nanocrystals for Superelectrochemical Hydrogen Evolution Reaction. ACS Nano, 2016, 10, 8929-8937.	7.3	140
9	Solvent-Assisted Oxygen Incorporation of Vertically Aligned MoS ₂ Ultrathin Nanosheets Decorated on Reduced Graphene Oxide for Improved Electrocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces, 2016, 8, 25210-25218.	4.0	103
10	Controllable nanoscale engineering of vertically aligned MoS2 ultrathin nanosheets by nitrogen doping of 3D graphene hydrogel for improved electrocatalytic hydrogen evolution. Carbon, 2017, 116, 223-231.	5.4	92
11	A photocatalyst of sulphur depleted monolayered molybdenum sulfide nanocrystals for dye degradation and hydrogen evolution reaction. Nano Energy, 2017, 38, 544-552.	8.2	90
12	In situ simultaneous encapsulation of defective MoS2 nanolayers and sulfur nanodots into SPAN fibers for high rate sodium-ion batteries. Chemical Engineering Journal, 2021, 404, 126430.	6.6	90
13	Superior sodium storage of novel VO ₂ nano-microspheres encapsulated into crumpled reduced graphene oxide. Journal of Materials Chemistry A, 2017, 5, 4850-4860.	5.2	79
14	Rationally-designed configuration of directly-coated Ni3S2/Ni electrode by RGO providing superior sodium storage. Carbon, 2018, 133, 14-22.	5.4	67
15	Engineering Carbon Materials for Electrochemical Oxygen Reduction Reactions. Advanced Energy Materials, 2021, 11, 2100695.	10.2	63
16	Green synthesis of a Se/HPCF–rGO composite for Li–Se batteries with excellent long-term cycling performance. Journal of Materials Chemistry A, 2017, 5, 22997-23005.	5.2	61
17	Effective surface disorder engineering of metal oxide nanocrystals for improved photocatalysis. Applied Catalysis B: Environmental, 2017, 203, 615-624.	10.8	51
18	Mn-Fe3O4 nanoparticles anchored on the urushiol functionalized 3D-graphene for the electrochemical detection of 4-nitrophenol. Journal of Hazardous Materials, 2021, 409, 124926.	6.5	47

#	Article	IF	CITATIONS
19	Engineering 2D Materials: A Viable Pathway for Improved Electrochemical Energy Storage. Advanced Energy Materials, 2020, 10, 2002621.	10.2	45
20	Molten salt assisted synthesis of 3C–SiC nanowire and its photoluminescence properties. Ceramics International, 2015, 41, 12614-12620.	2.3	43
21	A strong and compressible three dimensional graphene/polyurushiol composite for efficient water cleanup. Chemical Engineering Journal, 2018, 333, 153-161.	6.6	43
22	Controllable S-Vacancies of monolayered Mo–S nanocrystals for highly harvesting lithium storage. Nano Energy, 2020, 78, 105235.	8.2	41
23	Effective solvothermal deoxidization of graphene oxide using solid sulphur as a reducing agent. Journal of Materials Chemistry, 2012, 22, 14385.	6.7	40
24	First-principles calculations of stability of graphene-like BC3 monolayer and its high-performance potassium storage. Chinese Chemical Letters, 2021, 32, 900-905.	4.8	32
25	Two-dimensional blue-phase CX ($X = S$, Se) monolayers with high carrier mobility and tunable photocatalytic water splitting capability. Chinese Chemical Letters, 2021, 32, 1977-1982.	4.8	31
26	Surface Energy Engineering in the Solvothermal Deoxidation of Graphene Oxide. Advanced Materials Interfaces, 2014, 1, 1300078.	1.9	30
27	Synthesis and Application in the CO Oxidation Conversion Reaction of Hexagonal Boron Nitride with High Surface Area. Journal of the American Ceramic Society, 2009, 92, 1347-1349.	1.9	29
28	Fabrication of nitrogen and sulfur co-doped carbon nanofibers with three-dimensional architecture for high performance supercapacitors. Applied Surface Science, 2019, 495, 143572.	3.1	29
29	One-Pot Solvothermal Preparation of Fe ₃ O ₄ â€"Urushiolâ€"Graphene Hybrid Nanocomposites for Highly Improved Fenton Reactions. ACS Applied Nano Materials, 2018, 1, 2754-2762.	2.4	28
30	Investigating the bioavailability of graphene quantum dots in lung tissues via Fourier transform infrared spectroscopy. Interface Focus, 2018, 8, 20170054.	1.5	26
31	Improved charge injection of edge aligned MoS ₂ /MoO ₂ hybrid nanosheets for highly robust and efficient electrocatalysis of H ₂ production. Nanoscale, 2020, 12, 5003-5013.	2.8	26
32	Moss-Derived Mesoporous Carbon as Bi-Functional Electrode Materials for Lithium–Sulfur Batteries and Supercapacitors. Nanomaterials, 2019, 9, 84.	1.9	25
33	Effects of Boron Content on Microstructure and Wear Properties of FeCoCrNiBx High-Entropy Alloy Coating by Laser Cladding. Applied Sciences (Switzerland), 2020, 10, 49.	1.3	25
34	Formation of tunable graphene oxide coating with high adhesion. Physical Chemistry Chemical Physics, 2016, 18, 5086-5090.	1.3	24
35	The Dual Functions of Defectâ€Rich Carbon Nanotubes as Both Conductive Matrix and Efficient Mediator for Lïi£¿S Batteries. Small, 2021, 17, e2103535.	5.2	23
36	Preparation of SiC/SiO2 core–shell nanowires via molten salt mediated carbothermal reduction route. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 80, 19-24.	1.3	22

#	Article	IF	CITATIONS
37	Synthesis of hierarchically porous mullite ceramics with improved thermal insulation <i>via</i> foam-gelcasting combined with pore former addition. Advances in Applied Ceramics, 2018, 117, 493-499.	0.6	22
38	Facile synthesis of hexagonal boron nitride fibers and flowers. Materials Letters, 2007, 61, 1735-1737.	1.3	21
39	Synthesis and characterization of Fe–Ce–MCM-41. Materials Letters, 2006, 60, 3221-3223.	1.3	17
40	Synthesis of novel acetabuliform boron nitride nanoparticles with high surface area. Scripta Materialia, 2008, 59, 1151-1154.	2.6	17
41	Synthesis of a novel mesoporous silicon carbide with a thorn-ball-like shape. Scripta Materialia, 2006, 55, 883-886.	2.6	16
42	Facile in-situ formation of high efficiency nanocarbon supported tungsten carbide nanocatalysts for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2018, 43, 15650-15658.	3.8	15
43	A simple method to synthesize polyhedral hexagonal boron nitride nanofibers. Solid State Sciences, 2007, 9, 1099-1104.	1.5	14
44	Simple growth of BCNO@C core shell fibres and luminescent BCNO tubes. CrystEngComm, 2015, 17, 1491-1495.	1.3	10
45	Unzipping chemical bonds of non-layered bulk structures to form ultrathin nanocrystals. Matter, 2021, 4, 955-968.	5.0	10
46	Size-dependent oriented attachment in the growth of pure and defect-free hexagonal boron nitride nanocrystals. Nanotechnology, 2011, 22, 215603.	1.3	8
47	Fast Activation of Graphene with a Highly Distorted Surface and Its Role in Improved Aqueous Electrochemical Capacitors. ACS Applied Energy Materials, 2022, 5, 8004-8014.	2.5	6
48	Low-temperature synthesis of calcium hexaboride nanoparticles via magnesiothermic reduction in molten salt. Journal of the Ceramic Society of Japan, 2017, 125, 866-871.	0.5	3
49	Transition Metal Dichalcogenides for Energy Storage Applications. , 2019, , 173-201.		2
50	Synthesis and characterization of water soluble self-passivated graphene quantum dots for biological applications. , 2015 , , .		1
51	Bio-imaging of lung diseases using luminescent graphene nanocrystals. , 2016, , .		O