Vidhya Selvanathan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/519579/publications.pdf Version: 2024-02-01

VIDHYA SELVANATHAN

#	Article	IF	CITATIONS
1	pH Sensitive Hydrogels in Drug Delivery: Brief History, Properties, Swelling, and Release Mechanism, Material Selection and Applications. Polymers, 2017, 9, 137.	2.0	415
2	Current trends and prospects of tidal energy technology. Environment, Development and Sustainability, 2021, 23, 8179-8194.	2.7	95
3	Ternary natural deep eutectic solvent (NADES) infused phthaloyl starch as cost efficient quasi-solid gel polymer electrolyte. Carbohydrate Polymers, 2017, 167, 210-218.	5.1	45
4	Improvement of N-phthaloylchitosan based gel polymer electrolyte in dye-sensitized solar cells using a binary salt system. Carbohydrate Polymers, 2017, 157, 938-944.	5.1	32
5	Diluted chemical bath deposition of CdZnS as prospective buffer layer in CIGS solar cell. Ceramics International, 2021, 47, 11003-11009.	2.3	28
6	Recovery of FTO coated glass substrate <i>via</i> environment-friendly facile recycling perovskite solar cells. RSC Advances, 2021, 11, 14534-14541.	1.7	27
7	Effects of oxygen concentration variation on the structural and optical properties of reactive sputtered WOx thin film. Solar Energy, 2021, 222, 202-211.	2.9	26
8	Synthesis of a novel organosoluble, biocompatible, and antibacterial chitosan derivative for biomedical applications. Journal of Applied Polymer Science, 2018, 135, 45905.	1.3	21
9	Effect of polar aprotic solvents on hydroxyethyl cellulose-based gel polymer electrolyte. Ionics, 2018, 24, 1955-1964.	1.2	20
10	A novel application for oil palm empty fruit bunch: extraction and modification of cellulose for solid polymer electrolyte. Ionics, 2018, 24, 3827-3836.	1.2	20
11	Organosoluble starch derivative as quasi-solid electrolytes in DSSC: Unravelling the synergy between electrolyte rheology and photovoltaic properties. Solar Energy, 2020, 197, 144-153.	2.9	20
12	Phytochemical-Assisted Green Synthesis of Nickel Oxide Nanoparticles for Application as Electrocatalysts in Oxygen Evolution Reaction. Catalysts, 2021, 11, 1523.	1.6	20
13	Artificial Neural Network and Response Surface Methodology Modeling in Ionic Conductivity Predictions of Phthaloylchitosan-Based Gel Polymer Electrolyte. Polymers, 2016, 8, 22.	2.0	19
14	Muntingia calabura Leaves Mediated Green Synthesis of CuO Nanorods: Exploiting Phytochemicals for Unique Morphology. Materials, 2021, 14, 6379.	1.3	19
15	Organosoluble Starch-Cellulose Binary Polymer Blend as a Quasi-Solid Electrolyte in a Dye-Sensitized Solar Cell. Polymers, 2020, 12, 516.	2.0	16
16	Improved ionic conductivity in guar gum succinate–based polymer electrolyte membrane. High Performance Polymers, 2018, 30, 993-1001.	0.8	12
17	Enhancing spectral response towards high-performance dye-sensitised solar cells by multiple dye approach: A comprehensive review. Applied Materials Today, 2021, 25, 101204.	2.3	11
18	Oil palm waste based phthaloyl cellulose: a product of photosynthesis as an electrolyte of photovoltaics. Cellulose, 2019, 26, 1605-1617.	2.4	10

VIDHYA SELVANATHAN

#	Article	IF	CITATIONS
19	Resorcinol-Formaldehyde (RF) as a Novel Plasticizer for Starch-Based Solid Biopolymer Electrolyte. Polymers, 2020, 12, 2170.	2.0	10
20	Ionic liquid infused starch-cellulose derivative based quasi-solid dye-sensitized solar cell: exploiting the rheological properties of natural polymers. Cellulose, 2021, 28, 5545.	2.4	9
21	Organosoluble, esterified starch as quasi-solid biopolymer electrolyte in dye-sensitized solar cell. Journal of Materials Research and Technology, 2021, 12, 1638-1648.	2.6	9
22	Conductivity or rheology? Tradeoff for competing properties in the fabrication of a gel polymer electrolyte based on chitosan-barbiturate derivative. Ionics, 2018, 24, 3015-3025.	1.2	5
23	Koch Fractal Loop Circular Polarization (CP) Antenna Integrated with Solar Cells. , 2019, , .		5
24	The impact of acetylation on physical and electrochemical characteristics of cellulose-based quasi-solid polymer electrolytes. Journal of Polymer Research, 2020, 27, 1.	1.2	5
25	Transformation of Oil Palm Waste-Derived Cellulose into Solid Polymer Electrolytes: Investigating the Crucial Role of Plasticizers. Polymers, 2021, 13, 3685.	2.0	3
26	Sustainable production of oxalic acid from waste cane sugar molasses via systemic recycling of nitrogen oxide. Journal of Cleaner Production, 2022, 339, 130704.	4.6	2
27	The impact of substitution of two hydrophobic moieties on the properties of guar gum based hydrogels. Pigment and Resin Technology, 2021, ahead-of-print, .	0.5	Ο