Jan Theeuwes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5195784/publications.pdf

Version: 2024-02-01

349 papers 25,512 citations

74 h-index 10399 144 g-index

370 all docs

 $\begin{array}{c} 370 \\ \text{docs citations} \end{array}$

370 times ranked

11246 citing authors

#	Article	IF	CITATIONS
1	Spatial suppression due to statistical regularities in a visual detection task. Attention, Perception, and Psychophysics, 2022, 84, 450-458.	0.7	6
2	Reward learning and statistical learning independently influence attentional priority of salient distractors in visual search. Attention, Perception, and Psychophysics, 2022, 84, 1446-1459.	0.7	7
3	Learning to suppress a location does not depend on knowing which location. Attention, Perception, and Psychophysics, 2022, 84, 1087-1097.	0.7	12
4	Proactive enhancement and suppression elicited by statistical regularities in visual search Journal of Experimental Psychology: Human Perception and Performance, 2022, 48, 443-457.	0.7	15
5	Statistical learning of across-trial regularities during serial search Journal of Experimental Psychology: Human Perception and Performance, 2022, 48, 262-274.	0.7	5
6	Surprisingly inflexible: Statistically learned suppression of distractors generalizes across contexts. Attention, Perception, and Psychophysics, 2022, 84, 459-473.	0.7	8
7	Spatial enhancement due to statistical learning tracks the estimated spatial probability. Attention, Perception, and Psychophysics, 2022, , .	0.7	3
8	Ten simple rules to study distractor suppression. Progress in Neurobiology, 2022, 213, 102269.	2.8	31
9	What to expect where and when: how statistical learning drives visual selection. Trends in Cognitive Sciences, 2022, 26, 860-872.	4.0	35
10	Spatial suppression due to statistical learning tracks the estimated spatial probability. Attention, Perception, and Psychophysics, 2021, 83, 283-291.	0.7	14
11	A saliency-specific and dimension-independent mechanism of distractor suppression. Attention, Perception, and Psychophysics, 2021, 83, 292-307.	0.7	4
12	Progress toward resolving the attentional capture debate. Visual Cognition, 2021, 29, 1-21.	0.9	181
13	Distractor suppression leads to reduced flanker interference. Attention, Perception, and Psychophysics, 2021, 83, 624-636.	0.7	6
14	Multivariate analysis of EEG activity indexes contingent attentional capture. NeuroImage, 2021, 226, 117562.	2.1	4
15	Statistical learning affects the time courses of salience-driven and goal-driven selection Journal of Experimental Psychology: Human Perception and Performance, 2021, 47, 121-133.	0.7	8
16	Proactive distractor suppression elicited by statistical regularities in visual search. Psychonomic Bulletin and Review, 2021, 28, 918-927.	1.4	24
17	Self-explaining roads: What does visual cognition tell us about designing safer roads?. Cognitive Research: Principles and Implications, 2021, 6, 15.	1.1	14
18	Across-trial spatial suppression in visual search. Attention, Perception, and Psychophysics, 2021, 83, 2744-2752.	0.7	6

#	Article	IF	CITATIONS
19	Attentional suppression in time and space Journal of Experimental Psychology: Human Perception and Performance, 2021, 47, 1056-1062.	0.7	8
20	Response to commentaries to Luck et al. (2021). Progress toward resolving the attentional capture debate. Visual Cognition, 2021, 29, 637-643.	0.9	4
21	Statistical distractor learning modulates perceptual sensitivity. Journal of Vision, 2021, 21, 3.	0.1	4
22	Enhancing banknote authentication by guiding attention to security features and manipulating prevalence expectancy. Cognitive Research: Principles and Implications, 2021, 6, 73.	1.1	2
23	Learning in Visual Regions as Support for the Bias in Future Value-Driven Choice. Cerebral Cortex, 2020, 30, 2005-2018.	1.6	6
24	Delayed disengagement of attention from distractors signalling reward. Cognition, 2020, 195, 104125.	1.1	25
25	Learning to suppress a distractor is not affected by working memory load. Psychonomic Bulletin and Review, 2020, 27, 96-104.	1.4	21
26	More capture, more suppression: Distractor suppression due to statistical regularities is determined by the magnitude of attentional capture. Psychonomic Bulletin and Review, 2020, 27, 86-95.	1.4	19
27	Independent effects of statistical learning and top-down attention. Attention, Perception, and Psychophysics, 2020, 82, 3895-3906.	0.7	21
28	Statistical learning in the absence of explicit top-down attention. Cortex, 2020, 131, 54-65.	1.1	32
29	Proactively location-based suppression elicited by statistical learning. PLoS ONE, 2020, 15, e0233544.	1.1	9
30	A story about statistical learning in a story: Regularities impact eye movements during book reading. Journal of Memory and Language, 2020, 113, 104127.	1.1	10
31	Implicit attentional biases in a changing environment. Acta Psychologica, 2020, 206, 103064.	0.7	17
32	Statistical regularities across trials bias attentional selection Journal of Experimental Psychology: Human Perception and Performance, 2020, 46, 860-870.	0.7	19
33	Salience determines attentional orienting in visual selection Journal of Experimental Psychology: Human Perception and Performance, 2020, 46, 1051-1057.	0.7	41
34	Visual memory benefits from prolonged encoding time regardless of stimulus type Journal of Experimental Psychology: Learning Memory and Cognition, 2020, 46, 1998-2005.	0.7	11
35	Finding counterfeited banknotes: the roles of vision and touch. Cognitive Research: Principles and Implications, 2020, 5, 40.	1.1	5
36	Proactively location-based suppression elicited by statistical learning. , 2020, 15, e0233544.		0

#	Article	IF	CITATIONS
37	Proactively location-based suppression elicited by statistical learning. , 2020, 15, e0233544.		О
38	Proactively location-based suppression elicited by statistical learning., 2020, 15, e0233544.		0
39	Proactively location-based suppression elicited by statistical learning. , 2020, 15, e0233544.		0
40	Proactively location-based suppression elicited by statistical learning., 2020, 15, e0233544.		0
41	Proactively location-based suppression elicited by statistical learning. , 2020, 15, e0233544.		0
42	Capture and Control: Working Memory Modulates Attentional Capture by Reward-Related Stimuli. Psychological Science, 2019, 30, 1174-1185.	1.8	22
43	Dopaminergic medication reduces striatal sensitivity to negative outcomes in Parkinson's disease. Brain, 2019, 142, 3605-3620.	3.7	26
44	Changes (but not differences) in motion direction fail to capture attention. Vision Research, 2019, 165, 54-63.	0.7	7
45	Spatial suppression due to statistical regularities is driven by distractor suppression not by target activation. Attention, Perception, and Psychophysics, 2019, 81, 1405-1414.	0.7	39
46	Anticipatory Distractor Suppression Elicited by Statistical Regularities in Visual Search. Journal of Cognitive Neuroscience, 2019, 31, 1535-1548.	1.1	91
47	Suppression history of distractor location biases attentional and oculomotor control. Visual Cognition, 2019, 27, 142-157.	0.9	17
48	Updating spatial working memory in a dynamic visual environment. Cortex, 2019, 119, 267-286.	1.1	3
49	Memory-based attentional biases survive spatial suppression driven by selection history. Visual Cognition, 2019, 27, 343-350.	0.9	1
50	Statistical regularities bias overt attention. Attention, Perception, and Psychophysics, 2019, 81, 1813-1821.	0.7	38
51	Discriminating between anticipatory and visually triggered saccades: measuring minimal visual saccadic response time using luminance. Journal of Neurophysiology, 2019, 121, 2101-2111.	0.9	8
52	Attentional capture by Pavlovian reward-signalling distractors in visual search persists when rewards are removed. PLoS ONE, 2019, 14, e0226284.	1.1	27
53	Spontaneous eye blink rate predicts individual differences in exploration and exploitation during reinforcement learning. Scientific Reports, 2019, 9, 17436.	1.6	16
54	Goal-driven, stimulus-driven, and history-driven selection. Current Opinion in Psychology, 2019, 29, 97-101.	2.5	123

#	Article	IF	CITATIONS
55	Neural Dynamics of Reward-Induced Response Activation and Inhibition. Cerebral Cortex, 2019, 29, 3961-3976.	1.6	14
56	Statistical regularities induce spatial as well as feature-specific suppression Journal of Experimental Psychology: Human Perception and Performance, 2019, 45, 1291-1303.	0.7	49
57	Momentary, Offset-Triggered Dual-Task Interference in Visual Working Memory. Journal of Cognition, 2019, 2, .	1.0	4
58	How to inhibit a distractor location? Statistical learning versus active, top-down suppression. Attention, Perception, and Psychophysics, 2018, 80, 860-870.	0.7	137
59	Stimuli that signal the availability of reward break into attentional focus. Vision Research, 2018, 144, 20-28.	0.7	11
60	Rapid updating of spatial working memory across saccades. Scientific Reports, 2018, 8, 1072.	1.6	10
61	Overt and covert attention to location-based reward. Vision Research, 2018, 142, 27-39.	0.7	7
62	Stimulus-driven and goal-driven effects on Pavlovian associative reward learning. Visual Cognition, 2018, 26, 131-148.	0.9	19
63	Competitive interactions in visual working memory drive access to awareness. Cortex, 2018, 102, 6-13.	1.1	13
64	Spatially Selective Alpha Oscillations Reveal Moment-by-Moment Trade-offs between Working Memory and Attention. Journal of Cognitive Neuroscience, 2018, 30, 256-266.	1.1	40
65	Selection history: How reward modulates selectivity of visual attention. Psychonomic Bulletin and Review, 2018, 25, 514-538.	1.4	220
66	Comparing the response modulation hypothesis and the integrated emotions system theory: The role of top-down attention in psychopathy. Personality and Individual Differences, 2018, 122, 134-139.	1.6	0
67	How pupil responses track value-based decision-making during and after reinforcement learning. PLoS Computational Biology, 2018, 14, e1006632.	1.5	55
68	To look or not to look? Reward, selection history, and oculomotor guidance. Journal of Neurophysiology, 2018, 120, 1740-1752.	0.9	4
69	Statistical regularities modulate attentional capture independent of search strategy. Attention, Perception, and Psychophysics, 2018, 80, 1763-1774.	0.7	82
70	Clinical pain and functional network topology in Parkinson's disease: a resting-state fMRI study. Journal of Neural Transmission, 2018, 125, 1449-1459.	1.4	10
71	Statistical regularities modulate attentional capture Journal of Experimental Psychology: Human Perception and Performance, 2018, 44, 13-17.	0.7	192
72	When shorter delays lead to worse memories: Task disruption makes visual working memory temporarily vulnerable to test interference Journal of Experimental Psychology: Learning Memory and Cognition, 2018, 44, 722-733.	0.7	19

#	Article	IF	Citations
73	Visual Selection: Usually Fast and Automatic; Seldom Slow and Volitional. Journal of Cognition, 2018, 1, 29.	1.0	120
74	Visual Selection: Usually Fast and Automatic; Seldom Slow and Volitional; A Reply to Commentaries. Journal of Cognition, 2018, 1, 21.	1.0	31
75	Spatial sampling in human visual cortex is modulated by both spatial and feature-based attention. ELife, 2018, 7, .	2.8	24
76	Suppression history of spatial locations biases attentional and oculomotor control. Journal of Vision, 2018, 18, 477.	0.1	0
77	Statistical learning shapes distractor suppression. Journal of Vision, 2018, 18, 1223.	0.1	1
78	The time course of attentional bias to cues of threat and safety. Cognition and Emotion, 2017, 31, 845-857.	1.2	31
79	Visual attention in violent offenders: Susceptibility to distraction. Psychiatry Research, 2017, 251, 281-286.	1.7	5
80	Mixed signals: The effect of conflicting reward- and goal-driven biases on selective attention. Attention, Perception, and Psychophysics, 2017, 79, 1297-1310.	0.7	13
81	Adverse orienting effects on visual working memory encoding and maintenance. Psychonomic Bulletin and Review, 2017, 24, 1261-1267.	1.4	5
82	People look at the object they fear: oculomotor capture by stimuli that signal threat. Cognition and Emotion, 2017, 31, 1707-1714.	1.2	60
83	Pavlovian reward learning underlies value driven attentional capture. Attention, Perception, and Psychophysics, 2017, 79, 415-428.	0.7	58
84	Working memory accuracy for multiple targets is driven by reward expectation and stimulus contrast with different time-courses. Scientific Reports, 2017, 7, 9082.	1.6	28
85	Don't let it distract you: how information about the availability of reward affects attentional selection. Attention, Perception, and Psychophysics, 2017, 79, 2275-2298.	0.7	37
86	Fearful Faces do Not Lead to Faster Attentional Deployment in Individuals with Elevated Psychopathic Traits. Journal of Psychopathology and Behavioral Assessment, 2017, 39, 596-604.	0.7	5
87	Sensitivity to value-driven attention is predicted by how we learn from value. Psychonomic Bulletin and Review, 2017, 24, 408-415.	1.4	28
88	Separate capacities for storing different features in visual working memory Journal of Experimental Psychology: Learning Memory and Cognition, 2017, 43, 226-236.	0.7	32
89	Individual differences in eye blink rate predict both transient and tonic pupil responses during reversal learning. PLoS ONE, 2017, 12, e0185665.	1.1	13
90	The influence of distractors on express saccades. Journal of Vision, 2017, 17, 35.	0.1	9

#	Article	IF	Citations
91	Eye abduction reduces but does not eliminate competition in the oculomotor system. Journal of Vision, 2017, 17, 15.	0.1	6
92	Was that a threat? Attentional biases by signals of threat Emotion, 2017, 17, 478-486.	1.5	15
93	Looking at paintings in the Vincent Van Gogh Museum: Eye movement patterns of children and adults. PLoS ONE, 2017, 12, e0178912.	1.1	48
94	When shorter delays lead to worse memories: Taking attention away from visual working memory temporarily makes it more vulnerable to test interference Journal of Vision, 2017, 17, 111.	0.1	1
95	Location-based effects underlie feature conjunction benefits in visual working memory. Journal of Vision, 2016, 16, 12.	0.1	31
96	The Role of the Oculomotor System in Updating Visual-Spatial Working Memory across Saccades. PLoS ONE, 2016, 11, e0161829.	1.1	7
97	Efficient Avoidance of the Penalty Zone in Human Eye Movements. PLoS ONE, 2016, 11, e0167956.	1.1	2
98	Effects of reward on oculomotor control. Journal of Neurophysiology, 2016, 116, 2453-2466.	0.9	12
99	Top-down attention and selection history in psychopathy: Evidence from a community sample Journal of Abnormal Psychology, 2016, 125, 435-441.	2.0	7
100	Value-modulated oculomotor capture by task-irrelevant stimuli is a consequence of early competition on the saccade map. Attention, Perception, and Psychophysics, 2016, 78, 2226-2240.	0.7	42
101	Oculomotor interference of bimodal distractors. Vision Research, 2016, 123, 46-55.	0.7	6
102	Appetitive and aversive outcome associations modulate exogenous cueing. Attention, Perception, and Psychophysics, 2016, 78, 2253-2265.	0.7	20
103	Learning changes the attentional status of prospective memories. Psychonomic Bulletin and Review, 2016, 23, 1483-1490.	1.4	13
104	Visual input signaling threat gains preferential access to awareness in a breaking continuous flash suppression paradigm. Cognition, 2016, 149, 77-83.	1.1	52
105	Distractors associated with reward break through the focus of attention. Attention, Perception, and Psychophysics, 2016, 78, 2213-2225.	0.7	26
106	Reward alters the perception of time. Cognition, 2016, 148, 19-26.	1.1	25
107	Pavlovian reward learning underlies value driven attentional capture. Journal of Vision, 2016, 16, 80.	0.1	1
108	Cognitive and Ocular Factors Jointly Determine Pupil Responses under Equiluminance. PLoS ONE, 2016, 11, e0155574.	1.1	127

#	Article	IF	CITATIONS
109	Was that a threat? A cueing study on attentional guidance by threat signals. Journal of Vision, 2016, 16, 83.	0.1	O
110	Oculomotor capture by stimuli that signal the availability of reward. Journal of Neurophysiology, 2015, 114, 2316-2327.	0.9	66
111	Potential threat attracts attention and interferes with voluntary saccades Emotion, 2015, 15, 329-338.	1.5	50
112	Forgotten but not gone: Retro-cue costs and benefits in a double-cueing paradigm suggest multiple states in visual short-term memory Journal of Experimental Psychology: Learning Memory and Cognition, 2015, 41, 1755-1763.	0.7	67
113	Reward breaks through centerâ€surround inhibition via anterior insula. Human Brain Mapping, 2015, 36, 5233-5251.	1.9	33
114	Evolving the stimulus to fit the brain: A genetic algorithm reveals the brain's feature priorities in visual search. Journal of Vision, 2015, 15, 8-8.	0.1	10
115	Nonspecific competition underlies transient attention. Psychological Research, 2015, 79, 844-860.	1.0	4
116	Nonspatial attentional capture by previously rewarded scene semantics. Visual Cognition, 2015, 23, 82-104.	0.9	43
117	Stimulus-driven attentional capture by subliminal onset cues. Attention, Perception, and Psychophysics, 2015, 77, 737-748.	0.7	28
118	Reward modulates oculomotor competition between differently valued stimuli. Vision Research, 2015, 108, 103-112.	0.7	26
119	Disentangling attentional deficits in psychopathy using visual search: Failures in the use of contextual information. Personality and Individual Differences, 2015, 86, 132-138.	1.6	21
120	Distractors that signal reward attract the eyes. Visual Cognition, 2015, 23, 1-24.	0.9	38
121	Rapid influences of cued visual memories on attentional guidance. Annals of the New York Academy of Sciences, 2015, 1339, 1-10.	1.8	21
122	Disentangling the Role of Cortico-Basal Ganglia Loops in Top–Down and Bottom–Up Visual Attention: An Investigation of Attention Deficits in Parkinson Disease. Journal of Cognitive Neuroscience, 2015, 27, 1215-1237.	1.1	25
123	Attentional capture by signals of threat. Cognition and Emotion, 2015, 29, 687-694.	1.2	131
124	Awareness of distractors is necessary to generate a strategy to avoid responding to them: A commentary on Lin and Murray (2015). Consciousness and Cognition, 2015, 37, 178-179.	0.8	0
125	Reward can modulate attentional capture, independent of top-down set. Attention, Perception, and Psychophysics, 2015, 77, 2540-2548.	0.7	42
126	Fear conditioned visual information is prioritized for visual awareness. Journal of Vision, 2015, 15, 384.	0.1	0

#	Article	IF	CITATIONS
127	Reward-Priming of Location in Visual Search. PLoS ONE, 2014, 9, e103372.	1.1	47
128	Distractor Evoked Deviations of Saccade Trajectory Are Modulated by Fixation Activity in the Superior Colliculus: Computational and Behavioral Evidence. PLoS ONE, 2014, 9, e116382.	1.1	12
129	Priming and the guidance by visual and categorical templates in visual search. Frontiers in Psychology, 2014, 5, 148.	1.1	12
130	Exogenous visual orienting by reward. Journal of Vision, 2014, 14, 6-6.	0.1	94
131	The interaction between stimulus-driven and goal-driven orienting as revealed by eye movements Journal of Experimental Psychology: Human Perception and Performance, 2014, 40, 378-390.	0.7	17
132	In competition for the attentional template: Can multiple items within visual working memory guide attention? Journal of Experimental Psychology: Human Perception and Performance, 2014, 40, 1450-1464.	0.7	125
133	Reward breaks through the inhibitory region around attentional focus. Journal of Vision, 2014, 14, 2-2.	0.1	20
134	Updating visual–spatial working memory during object movement. Vision Research, 2014, 94, 51-57.	0.7	12
135	Novelty processing and memory formation in Parkinson׳s disease. Neuropsychologia, 2014, 62, 124-136.	0.7	17
136	Object-centered orienting and IOR. Attention, Perception, and Psychophysics, 2014, 76, 2249-2255.	0.7	4
137	The effect of reward on orienting and reorienting in exogenous cuing. Cognitive, Affective and Behavioral Neuroscience, 2014, 14, 635-646.	1.0	35
138	The time course of top-down control on saccade averaging. Vision Research, 2014, 100, 29-37.	0.7	25
139	The time course of protecting a visual memory representation from perceptual interference. Frontiers in Human Neuroscience, 2014, 8, 1053.	1.0	48
140	Exogenous object-centered attention. Attention, Perception, and Psychophysics, 2013, 75, 812-818.	0.7	17
141	A Retinotopic Attentional Trace after Saccadic Eye Movements: Evidence from Event-related Potentials. Journal of Cognitive Neuroscience, 2013, 25, 1563-1577.	1.1	15
142	Disgust- and not fear-evoking images hold our attention. Acta Psychologica, 2013, 143, 1-6.	0.7	85
143	Competitive Integration of Visual and Goal-related Signals on Neuronal Accumulation Rate: A Correlate of Oculomotor Capture in the Superior Colliculus. Journal of Cognitive Neuroscience, 2013, 25, 1754-1765.	1.1	16
144	Early perceptual interactions shape the time course of cueing. Acta Psychologica, 2013, 144, 40-50.	0.7	3

#	Article	IF	CITATIONS
145	A reinvestigation of the reference frame of the tilt-adaptation aftereffect. Scientific Reports, 2013, 3, 1152.	1.6	36
146	Exogenous attentional capture by subliminal abrupt-onset cues: Evidence from contrast-polarity independent cueing effects Journal of Experimental Psychology: Human Perception and Performance, 2013, 39, 974-988.	0.7	20
147	Feature-based attention: it is all bottom-up priming. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20130055.	1.8	119
148	Attentional prioritisation of threatening information: Examining the role of the size of the attentional window. Cognition and Emotion, 2013, 27, 621-631.	1.2	12
149	The time it takes to turn a memory into a template. Journal of Vision, 2013, 13, 8-8.	0.1	9
150	The eyes like their targets on a stable background. Journal of Vision, 2013, 13, 5-5.	0.1	2
151	Priming makes a stimulus more salient. Journal of Vision, 2013, 13, 21-21.	0.1	26
152	Dissociating oculomotor contributions to spatial and feature-based selection. Journal of Neurophysiology, 2013, 110, 1525-1534.	0.9	25
153	Irrelevant Auditory and Visual Events Induce a Visual Attentional Blink. Experimental Psychology, 2013, 60, 80-89.	0.3	7
154	Updating the premotor theory: The allocation of attention is not always accompanied by saccade preparation Journal of Experimental Psychology: Human Perception and Performance, 2012, 38, 902-914.	0.7	47
155	Interaction between Visual- and Goal-related Neuronal Signals on the Trajectories of Saccadic Eye Movements. Journal of Cognitive Neuroscience, 2012, 24, 707-717.	1.1	37
156	Top-down versus bottom-up attentional control: a failed theoretical dichotomy. Trends in Cognitive Sciences, 2012, 16, 437-443.	4.0	1,123
157	Reward grabs the eye: Oculomotor capture by rewarding stimuli. Vision Research, 2012, 74, 80-85.	0.7	194
158	Role of frontal cortex in attentional capture by singleton distractors. Brain and Cognition, 2012, 80, 367-373.	0.8	28
159	The presence of threat affects saccade trajectories. Visual Cognition, 2012, 20, 284-299.	0.9	31
160	Shifting Attention within Memory Representations Involves Early Visual Areas. PLoS ONE, 2012, 7, e35528.	1.1	13
161	Dissociable Spatial and Temporal Effects of Inhibition of Return. PLoS ONE, 2012, 7, e44290.	1.1	9
162	Overt is no better than covert when rehearsing visuo-spatial information in working memory. Memory and Cognition, 2012, 40, 52-61.	0.9	37

#	Article	IF	CITATIONS
163	Inhibition of return: A "depth-blind―mechanism?. Acta Psychologica, 2012, 140, 75-80.	0.7	4
164	The influence of visual search efficiency on the time-course of identity-based SR-compatibility. Acta Psychologica, 2012, 140, 101-109.	0.7	1
165	Lateral interactions in the superior colliculus produce saccade deviation in a neural field model. Vision Research, 2012, 62, 66-74.	0.7	21
166	OpenSesame: An open-source, graphical experiment builder for the social sciences. Behavior Research Methods, 2012, 44, 314-324.	2.3	1,638
167	Automatic Control of Visual Selection. Nebraska Symposium on Motivation, 2012, 59, 23-62.	0.9	6
168	Oculomotor Guidance and Capture by Irrelevant Faces. PLoS ONE, 2012, 7, e34598.	1.1	34
169	The Attentional Window Modulates Capture by Audiovisual Events. PLoS ONE, 2012, 7, e39137.	1.1	23
170	Reward has a residual impact on target selection in visual search, but not on the suppression of distractors. Visual Cognition, 2011, 19, 117-128.	0.9	81
171	Angry faces hold the eyes. Visual Cognition, 2011, 19, 27-36.	0.9	74
172	Early multisensory interactions affect the competition among multiple visual objects. NeuroImage, 2011, 55, 1208-1218.	2.1	133
173	Signals of threat do not capture, but prioritize, attention: A conditioning approach Emotion, 2011, 11, 81-89.	1.5	91
174	The Time Course of Attention: Selection Is Transient. PLoS ONE, 2011, 6, e27661.	1.1	12
175	Stay Tuned: What Is Special About Not Shifting Attention?. PLoS ONE, 2011, 6, e16829.	1.1	6
176	Distribution of Attention Modulates Salience Signals in Early Visual Cortex. PLoS ONE, 2011, 6, e20379.	1.1	6
177	The role of fear and expectancies in capture of covert attention by spiders Emotion, 2011, 11, 768-775.	1.5	31
178	Enhanced visual perception with occipital transcranial magnetic stimulation. European Journal of Neuroscience, 2011, 34, 1320-1325.	1.2	70
179	Selection within visual memory representations activates the oculomotor system. Neuropsychologia, 2011, 49, 1605-1610.	0.7	28
180	Attempts to control pain prioritize attention towards signals of pain: An experimental study. Pain, 2011, 152, 1068-1073.	2.0	37

#	Article	IF	CITATIONS
181	The effect of semantic information on saccade trajectory deviations. Vision Research, 2011, 51, 1124-1128.	0.7	17
182	Feature priming and the capture of visual attention: Linking two ambiguity resolution hypotheses. Brain Research, 2011, 1370, 175-184.	1.1	29
183	Context and competition in the capture of visual attention. Attention, Perception, and Psychophysics, 2011, 73, 2053-2064.	0.7	27
184	On the limits of top-down control of visual selection. Attention, Perception, and Psychophysics, 2011, 73, 2092-2103.	0.7	57
185	Mantra: an open method for object and movement tracking. Behavior Research Methods, 2011, 43, 1182-1193.	2.3	3
186	Attention on our mind: The role of spatial attention in visual working memory. Acta Psychologica, 2011, 137, 248-251.	0.7	63
187	Evidence for a dissociation between the control of oculomotor capture and disengagement. Experimental Brain Research, 2011, 208, 621-631.	0.7	44
188	A global effect of capture saccades. Experimental Brain Research, 2011, 210, 57-65.	0.7	20
189	Visual attention and stability. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 516-527.	1.8	58
190	Preparatory Effects of Distractor Suppression: Evidence from Visual Cortex. PLoS ONE, 2011, 6, e27700.	1.1	20
191	Word cues affect detection but not localization responses. Attention, Perception, and Psychophysics, 2010, 72, 65-75.	0.7	8
192	What is top-down about contingent capture?. Attention, Perception, and Psychophysics, 2010, 72, 326-341.	0.7	171
193	Object-based eye movements: The eyes prefer to stay within the same object. Attention, Perception, and Psychophysics, 2010, 72, 597-601.	0.7	26
194	From reorienting of attention to biased competition: Evidence from hemifield effects. Attention, Perception, and Psychophysics, 2010, 72, 651-657.	0.7	23
195	Reduced attentional capture in action video game players. Attention, Perception, and Psychophysics, 2010, 72, 667-671.	0.7	143
196	Abrupt onsets capture attention independent of top-down control settings II: Additivity is no evidence for filtering. Attention, Perception, and Psychophysics, 2010, 72, 672-682.	0.7	47
197	Irrelevant onsets cause inhibition of return regardless of attentional set. Attention, Perception, and Psychophysics, 2010, 72, 1725-1729.	0.7	19
198	Characteristic sounds make you look at target objects more quickly. Attention, Perception, and Psychophysics, 2010, 72, 1736-1741.	0.7	61

#	Article	IF	Citations
199	ScanMatch: A novel method for comparing fixation sequences. Behavior Research Methods, 2010, 42, 692-700.	2.3	193
200	Audiovisual semantic interference and attention: Evidence from the attentional blink paradigm. Acta Psychologica, 2010, 134, 198-205.	0.7	18
201	Top–down and bottom–up control of visual selection. Acta Psychologica, 2010, 135, 77-99.	0.7	987
202	Unconscious attentional orienting to exogenous cues: A review of the literature. Acta Psychologica, 2010, 134, 299-309.	0.7	128
203	Attention and the multiple stages of multisensory integration: A review of audiovisual studies. Acta Psychologica, 2010, 134, 372-384.	0.7	240
204	Top-down and bottom-up control of visual selection: Reply to commentaries. Acta Psychologica, 2010, 135, 133-139.	0.7	35
205	Evidence for the predictive remapping of visual attention. Experimental Brain Research, 2010, 200, 117-122.	0.7	57
206	The time course of exogenous and endogenous control of covert attention. Experimental Brain Research, 2010, 201, 789-796.	0.7	55
207	A competitive integration model of exogenous and endogenous eye movements. Biological Cybernetics, 2010, 102, 271-291.	0.6	113
208	Unconscious cueing effects in saccadic eye movements $\hat{a} \in$ Facilitation and inhibition in temporal and nasal hemifield. Vision Research, 2010, 50, 606-613.	0.7	18
209	No capture outside the attentional window. Vision Research, 2010, 50, 2543-2550.	0.7	114
210	Stimulusâ€driven capture and contingent capture. Wiley Interdisciplinary Reviews: Cognitive Science, 2010, 1, 872-881.	1.4	34
211	Efficient Visual Search from Synchronized Auditory Signals Requires Transient Audiovisual Events. PLoS ONE, 2010, 5, e10664.	1.1	79
212	Gradual Remapping Results in Early Retinotopic and Late Spatiotopic Inhibition of Return. Psychological Science, 2010, 21, 1793-1798.	1.8	60
213	Reward Changes Salience in Human Vision via the Anterior Cingulate. Journal of Neuroscience, 2010, 30, 11096-11103.	1.7	518
214	Brain Structures Involved in Visual Search in the Presence and Absence of Color Singletons. Journal of Cognitive Neuroscience, 2010, 22, 761-774.	1.1	13
215	Looking out for danger: An attentional bias towards spatially predictable threatening stimuli. Behaviour Research and Therapy, 2010, 48, 1150-1154.	1.6	25
216	Spatial working memory effects in early visual cortex. Brain and Cognition, 2010, 72, 368-377.	0.8	45

#	Article	IF	CITATIONS
217	Reward Guides Vision when It's Your Thing: Trait Reward-Seeking in Reward-Mediated Visual Priming. PLoS ONE, 2010, 5, e14087.	1.1	136
218	Temporal constraints on conscious vision: On the ubiquitous nature of the attentional blink. Journal of Vision, 2009, 9, 18-18.	0.1	44
219	Early and Late Modulation of Saccade Deviations by Target Distractor Similarity. Journal of Neurophysiology, 2009, 102, 1451-1458.	0.9	70
220	Saccade trajectory deviations and inhibition-of-return: Measuring the amount of attentional processing. Vision Research, 2009, 49, 1307-1315.	0.7	13
221	Eye cannot see it: The interference of subliminal distractors on saccade metrics. Vision Research, 2009, 49, 2104-2109.	0.7	31
222	You do not find your own face faster; you just look at it longer. Cognition, 2009, 111, 114-122.	1.1	79
223	Competition between auditory and visual spatial cues during visual task performance. Experimental Brain Research, 2009, 195, 593-602.	0.7	19
224	When Are Attention and Saccade Preparation Dissociated? Psychological Science, 2009, 20, 1340-1347.	1.8	81
225	No functional role of attention-based rehearsal in maintenance of spatial working memory representations. Acta Psychologica, 2009, 132, 124-135.	0.7	32
226	Interactions between working memory, attention and eye movements. Acta Psychologica, 2009, 132, 106-114.	0.7	198
227	Spatial working memory maintenance: Does attention play a role? A visual search study. Acta Psychologica, 2009, 132, 115-123.	0.7	5
228	The limits of top-down control of visual attention. Acta Psychologica, 2009, 132, 201-212.	0.7	72
229	Inhibition of saccadic eye movements to locations in spatial working memory. Attention, Perception, and Psychophysics, 2009, 71, 620-631.	0.7	33
230	Poke and pop: Tactile–visual synchrony increases visual saliency. Neuroscience Letters, 2009, 450, 60-64.	1.0	58
231	Do Pictures of Faces, and Which Ones, Capture Attention in the Inattentional-Blindness Paradigm?. Perception, 2009, 38, 552-568.	0.5	63
232	Unmasking the attentional blink Journal of Experimental Psychology: Human Perception and Performance, 2009, 35, 159-169.	0.7	85
233	Auditory and visual capture during focused visual attention Journal of Experimental Psychology: Human Perception and Performance, 2009, 35, 1303-1315.	0.7	33
234	Capture of the eyes by relevant and irrelevant onsets. Experimental Brain Research, 2008, 186, 225-235.	0.7	59

#	Article	IF	CITATIONS
235	Deficits in visuo-spatial working memory, inhibition and oculomotor control in boys with ADHD and their non-affected brothers. Journal of Neural Transmission, 2008, 115, 249-260.	1.4	44
236	Abrupt onsets capture attention independent of top-down control settings. Perception & Psychophysics, 2008, 70, 208-218.	2.3	135
237	Detecting the presence of a singleton involves focal attention. Psychonomic Bulletin and Review, 2008, 15, 555-560.	1.4	27
238	Selecting from dynamic environments: Attention distinguishes between blinking and moving. Perception & Psychophysics, 2008, 70, 166-178.	2.3	12
239	Priming T2 in a visual and auditory attentional blink task. Perception & Psychophysics, 2008, 70, 658-666.	2.3	14
240	To point a finger: Attentional and motor consequences of observing pointing movements. Acta Psychologica, 2008, 128, 56-62.	0.7	21
241	Inhibition of return in subliminal letter priming. Acta Psychologica, 2008, 129, 112-120.	0.7	3
242	Cueing the location of a distractor: An inhibitory mechanism of spatial attention?. Acta Psychologica, 2008, 129, 101-107.	0.7	69
243	Directing attention to a location in space results in retinotopic activation in primary visual cortex. Brain Research, 2008, 1222, 184-191.	1.1	31
244	The role of cueing in attentional capture. Visual Cognition, 2008, 16, 232-247.	0.9	22
244	The role of cueing in attentional capture. Visual Cognition, 2008, 16, 232-247. The detection of temporally defined objects does not require focused attention. Quarterly Journal of Experimental Psychology, 2008, 61, 1134-1142.	0.9	4
	The detection of temporally defined objects does not require focused attention. Quarterly Journal of		
245	The detection of temporally defined objects does not require focused attention. Quarterly Journal of Experimental Psychology, 2008, 61, 1134-1142.	0.6	4
245 246	The detection of temporally defined objects does not require focused attention. Quarterly Journal of Experimental Psychology, 2008, 61, 1134-1142. Static items are automatically prioritized in a dynamic environment. Visual Cognition, 2008, 16, 916-932. The Role of Awareness in Processing of Oculomotor Capture: Evidence from Event-related Potentials.	0.6	6
245 246 247	The detection of temporally defined objects does not require focused attention. Quarterly Journal of Experimental Psychology, 2008, 61, 1134-1142. Static items are automatically prioritized in a dynamic environment. Visual Cognition, 2008, 16, 916-932. The Role of Awareness in Processing of Oculomotor Capture: Evidence from Event-related Potentials. Journal of Cognitive Neuroscience, 2008, 20, 2285-2297. Audiovisual events capture attention: Evidence from temporal order judgments. Journal of Vision,	0.6 0.9	6 39
245 246 247 248	The detection of temporally defined objects does not require focused attention. Quarterly Journal of Experimental Psychology, 2008, 61, 1134-1142. Static items are automatically prioritized in a dynamic environment. Visual Cognition, 2008, 16, 916-932. The Role of Awareness in Processing of Oculomotor Capture: Evidence from Event-related Potentials. Journal of Cognitive Neuroscience, 2008, 20, 2285-2297. Audiovisual events capture attention: Evidence from temporal order judgments. Journal of Vision, 2008, 8, 2. The Influence of "Blind―Distractors on Eye Movement Trajectories in Visual Hemifield Defects.	0.6 0.9 1.1 0.1	463963
245 246 247 248	The detection of temporally defined objects does not require focused attention. Quarterly Journal of Experimental Psychology, 2008, 61, 1134-1142. Static items are automatically prioritized in a dynamic environment. Visual Cognition, 2008, 16, 916-932. The Role of Awareness in Processing of Oculomotor Capture: Evidence from Event-related Potentials. Journal of Cognitive Neuroscience, 2008, 20, 2285-2297. Audiovisual events capture attention: Evidence from temporal order judgments. Journal of Vision, 2008, 8, 2. The Influence of "Blind―Distractors on Eye Movement Trajectories in Visual Hemifield Defects. Journal of Cognitive Neuroscience, 2008, 20, 2025-2036. Differences in distractor-induced deviation between horizontal and vertical saccade trajectories.	0.6 0.9 1.1 0.1	4 6 39 63

#	Article	IF	CITATIONS
253	Oculomotor capture in ADHD. Cognitive Neuropsychology, 2007, 24, 535-549.	0.4	33
254	Grabbing attention without knowing: Automatic capture of attention by subliminal spatial cues. Visual Cognition, 2007, 15, 779-788.	0.9	78
255	The role of spatial and nonspatial information in visual selection Journal of Experimental Psychology: Human Perception and Performance, 2007, 33, 1335-1351.	0.7	76
256	Faster, more intense! The relation between electrophysiological reflections of attentional orienting, sensory gain control, and speed of responding. Brain Research, 2007, 1178, 92-105.	1.1	43
257	The spatial coding of the inhibition evoked by distractors. Vision Research, 2007, 47, 210-218.	0.7	49
258	The effects of a task-irrelevant visual event on spatial working memory. Psychonomic Bulletin and Review, 2007, 14, 1066-1071.	1.4	41
259	The relationship between covert and overt attention in endogenous cuing. Perception & Psychophysics, 2007, 69, 719-731.	2.3	59
260	The absence of an auditory-visual attentional blink is not due to echoic memory. Perception & Psychophysics, 2007, 69, 1230-1241.	2.3	18
261	The size of an attentional window modulates attentional capture by color singletons. Psychonomic Bulletin and Review, 2007, 14, 934-938.	1.4	153
262	Top-down influences make saccades deviate away: The case of endogenous cues. Acta Psychologica, 2007, 125, 279-290.	0.7	31
263	Exogenous spatial cueing modulates subliminal masked priming. Acta Psychologica, 2007, 126, 34-45.	0.7	52
264	Faces capture attention: Evidence from inhibition of return. Visual Cognition, 2006, 13, 657-665.	0.9	186
265	Feature-based memory-driven attentional capture: Visual working memory content affects visual attention Journal of Experimental Psychology: Human Perception and Performance, 2006, 32, 1243-1265.	0.7	455
266	Eye movement trajectories and what they tell us. Neuroscience and Biobehavioral Reviews, 2006, 30, 666-679.	2.9	198
267	Cuing the dimension of a distractor: Verbal cues of target identity also benefit same-dimension distractor singletons. Psychonomic Bulletin and Review, 2006, 13, 118-124.	1.4	11
268	Spatial working memory and inhibition of return. Psychonomic Bulletin and Review, 2006, 13, 608-613.	1.4	28
269	Our eyes deviate away from a location where a distractor is expected to appear. Experimental Brain Research, 2006, 169, 338-349.	0.7	62
270	An ERP study of preparatory and inhibitory mechanisms in a cued saccade task. Brain Research, 2006, 1105, 32-45.	1.1	37

#	Article	IF	CITATIONS
271	Abnormal susceptibility to distracters hinders perception in early stage Parkinson's disease: a controlled study. BMC Neurology, 2006, 6, 43.	0.8	14
272	Electrophysiological Evidence of the Capture of Visual Attention. Journal of Cognitive Neuroscience, 2006, 18, 604-613.	1.1	385
273	When is search for a static target among dynamic distractors efficient?. Journal of Experimental Psychology: Human Perception and Performance, 2006, 32, 59-72.	0.7	25
274	Visual search for featural singletons: No top-down modulation, only bottom-up priming. Visual Cognition, 2006, 14, 466-489.	0.9	132
275	Cross-Modal Interactions between Sensory Modalities: Implications for the Design of Multisensory Displays. , 2006, , 196-206.		3
276	Response Selection Modulates Visual Search Within and Across Dimensions Journal of Experimental Psychology: Human Perception and Performance, 2005, 31, 542-557.	0.7	60
277	Attentional capture and inhibition (of return): The effect on perceptual sensitivity. Perception & Psychophysics, 2005, 67, 1305-1312.	2.3	42
278	Target uncertainty does not lead to more distraction by singletons: Intertrial priming does. Perception & Psychophysics, 2005, 67, 1354-1361.	2.3	86
279	Prioritization by transients in visual search. Psychonomic Bulletin and Review, 2005, 12, 93-99.	1.4	30
280	Relation between saccade trajectories and spatial distractor locations. Cognitive Brain Research, 2005, 25, 579-582.	3.3	73
281	Irrelevant Singletons Capture Attention. , 2005, , 418-424.		18
282	Remembering a Location Makes the Eyes Curve Away. Psychological Science, 2005, 16, 196-199.	1.8	108
283	The influence of attending to multiple locations on eye movements. Vision Research, 2005, 45, 1921-1927.	0.7	50
284	No Blindness for Things that Do Not Change. Psychological Science, 2004, 15, 65-70.	1.8	11
285	The Relationship Between Inhibition of Return and Saccade Trajectory Deviations Journal of Experimental Psychology: Human Perception and Performance, 2004, 30, 538-554.	0.7	87
286	Attentional capture modulates perceptual sensitivity. Psychonomic Bulletin and Review, 2004, 11, 551-554.	1.4	44
287	Attentional set interacts with perceptual load in visual search. Psychonomic Bulletin and Review, 2004, 11, 697-702.	1.4	80
288	A new estimation of the duration of attentional dwell time. Psychonomic Bulletin and Review, 2004, 11, 60-64.	1.4	59

#	Article	IF	CITATIONS
289	Top-down search strategies cannot override attentional capture. Psychonomic Bulletin and Review, 2004, $11,65$ -70.	1.4	423
290	Inhibition-of-return and oculomotor interference. Vision Research, 2004, 44, 1485-1492.	0.7	55
291	Endogenous and exogenous attention shifts are mediated by the same large-scale neural network. Neurolmage, 2004, 22, 822-830.	2.1	166
292	Response Selection in Visual Search: The Influence of Response Compatibility of Nontargets Journal of Experimental Psychology: Human Perception and Performance, 2004, 30, 56-78.	0.7	20
293	The Role of Stimulus-Driven and Goal-Driven Control in Saccadic Visual Selection Journal of Experimental Psychology: Human Perception and Performance, 2004, 30, 746-759.	0.7	258
294	Attentional and oculomotor capture with static singletons. Perception & Psychophysics, 2003, 65, 735-746.	2.3	107
295	Prioritizing selection of new elements: Bottom-up versus top-down control. Perception & Psychophysics, 2003, 65, 1231-1242.	2.3	76
296	Inhibition of return spreads across 3-D space. Psychonomic Bulletin and Review, 2003, 10, 616-620.	1.4	25
297	Attentional capture within and between objects. Acta Psychologica, 2003, 113, 133-145.	0.7	9
298	Parallel allocation of attention prior to the execution of saccade sequences Journal of Experimental Psychology: Human Perception and Performance, 2003, 29, 882-896.	0.7	123
299	The Relationship Between Exogenous and Endogenous Saccades and Attention. , 2003, , 3-26.		21
300	Programming of endogenous and exogenous saccades: Evidence for a competitive integration model Journal of Experimental Psychology: Human Perception and Performance, 2002, 28, 1039-1054.	0.7	314
301	Relation Between Glare and Driving Performance. Human Factors, 2002, 44, 95-107.	2.1	127
302	Cognitive control of attention and action: Issues and trends. Psychological Research, 2002, 66, 215-219.	1.0	24
303	Oculomotor capture and Inhibition of Return: Evidence for an oculomotor suppression account of IOR. Psychological Research, 2002, 66, 234-246.	1.0	73
304	Irrelevant singletons capture attention: Evidence from inhibition of return. Perception & Psychophysics, 2002, 64, 764-770.	2.3	110
305	Programming of endogenous and exogenous saccades: evidence for a competitive integration model. Journal of Experimental Psychology: Human Perception and Performance, 2002, 28, 1039-54.	0.7	245
306	Attentional and Oculomotor Capture. Advances in Psychology, 2001, 133, 121-149.	0.1	51

#	Article	IF	CITATIONS
307	Visual marking beside the mark: Prioritizing selection by abrupt onsets. Perception & Psychophysics, 2001, 63, 891-900.	2.3	143
308	Spatial attention in early vision. Acta Psychologica, 2001, 108, 1-20.	0.7	24
309	The Effects of Road Design on Driving. , 2001, , 241-263.		6
310	Age Differences in the Control of Looking Behavior: Do You Know Where Your Eyes Have Been?. Psychological Science, 2000, 11, 210-217.	1.8	97
311	Commentary on Rasanen and Summala, "Car Drivers' Adjustments to Cyclists at Roundabouts". Transportation Human Factors, 2000, 2, 19-22.	0.3	5
312	Nonplanar Rearview Mirrors: A Survey of Mirror Types and European Driver Experience., 1999,,.		1
313	Oculomotor capture by abrupt onsets reveals concurrent programming of voluntary and involuntary saccades. Behavioral and Brain Sciences, 1999, 22, 689-690.	0.4	8
314	Attentional effects on preattentive vision: Spatial precues affect the detection of simple features Journal of Experimental Psychology: Human Perception and Performance, 1999, 25, 341-347.	0.7	47
315	Influence of attentional capture on oculomotor control Journal of Experimental Psychology: Human Perception and Performance, 1999, 25, 1595-1608.	0.7	270
316	Attentional capture and aging: Implications for visual search performance and oculomotor control Psychology and Aging, 1999, 14, 135-154.	1.4	79
317	Visual marking of old objects. Psychonomic Bulletin and Review, 1998, 5, 130-134.	1.4	86
318	Attentional control during visual search: The effect of irrelevant singletons Journal of Experimental Psychology: Human Perception and Performance, 1998, 24, 1342-1353.	0.7	214
319	Our Eyes do Not Always Go Where we Want Them to Go: Capture of the Eyes by New Objects. Psychological Science, 1998, 9, 379-385.	1.8	632
320	Attentional control within 3-D space Journal of Experimental Psychology: Human Perception and Performance, 1998, 24, 1476-1485.	0.7	57
321	Behavioral Aspects of Automatic Vehicle Guidance: Relationship Between Headway and Driver Comfort. Transportation Research Record, 1997, 1573, 17-22.	1.0	20
322	The effectiveness of side marker lamps: An experimental study. Accident Analysis and Prevention, 1997, 29, 235-245.	3.0	3
323	Spatial cuing in a stereoscopic display: Evidence for a "depth-aware―attentional focus. Psychonomic Bulletin and Review, 1997, 4, 524-529.	1.4	70
324	Driving Simulator Validity: Some Considerations. Transportation Research Record, 1996, 1550, 30-36.	1.0	146

#	Article	IF	CITATIONS
325	Parallel search for a conjunction of color and orientation: The effect of spatial proximity. Acta Psychologica, 1996, 94, 291-307.	0.7	21
326	Comment on williams and farmer's evaluation of daytime running lights. Accident Analysis and Prevention, 1996, 28, 799-800.	3.0	2
327	Search for a conjunctively defined target can be selectively limited to a color-defined subset of elements Journal of Experimental Psychology: Human Perception and Performance, 1995, 21, 1053-1069.	0.7	203
328	Rear Light Arrangements for Cars Equipped with a Center High-Mounted Stop Lamp. Human Factors, 1995, 37, 371-380.	2.1	12
329	Abrupt luminance change pops out; abrupt color change does not. Perception & Psychophysics, 1995, 57, 637-644.	2.3	147
330	Daytime running lights as a vehicle collision countermeasure: The Swedish evidence reconsidered. Accident Analysis and Prevention, 1995, 27, 633-642.	3.0	22
331	Self-explaining roads. Safety Science, 1995, 19, 217-225.	2.6	124
332	Temporal and spatial Characteristics of preattentive and attentive processing. Visual Cognition, 1995, 2, 221-233.	0.9	43
333	The effects of location cuing on redundant-target processing. Psychological Research, 1994, 57, 15-19.	1.0	11
334	Parallel search for a conjunction of contrast polarity and shape. Vision Research, 1994, 34, 3013-3016.	0.7	89
335	Endogenous and Exogenous Control of Visual Selection. Perception, 1994, 23, 429-440.	0.5	201
336	Stimulus-driven capture and attentional set: Selective search for color and visual abrupt onsets Journal of Experimental Psychology: Human Perception and Performance, 1994, 20, 799-806.	0.7	577
337	Visual selective attention: A theoretical analysis. Acta Psychologica, 1993, 83, 93-154.	0.7	180
338	Selective attention in vision. Acta Psychologica, 1993, 83, 237-242.	0.7	0
339	An adaptation-induced pop-out in visual search. Vision Research, 1993, 33, 2353-2357.	0.7	16
340	Perceptual selectivity for color and form. Perception & Psychophysics, 1992, 51, 599-606.	2.3	1,322
341	Categorization and identification of simultaneous targets. Acta Psychologica, 1991, 76, 73-86.	0.7	10
342	Visual search. Acta Psychologica, 1991, 77, 98-102.	0.7	0

#	Article	IF	CITATIONS
343	Exogenous and endogenous control of attention: The effect of visual onsets and offsets. Perception & Psychophysics, 1991, 49, 83-90.	2.3	716
344	Cross-dimensional perceptual selectivity. Perception & Psychophysics, 1991, 50, 184-193.	2.3	610
345	Perceptual selectivity is task dependent: Evidence from selective search. Acta Psychologica, 1990, 74, 81-99.	0.7	94
346	Effects of location and form cuing on the allocation of attention in the visual field. Acta Psychologica, 1989, 72, 177-192.	0.7	45
347	European Side-markers Effect on Traffic Safety. , 0, , .		0
348	Perceptual selectivity for color and form: On the nature of the interference effect , 0, , 297-314.		56
349	Driving Simulator Validity: Some Considerations. , 0, .		129