Bernd Weidenfeller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5195666/publications.pdf

Version: 2024-02-01

29 papers 1,081 citations

840119 11 h-index 500791 28 g-index

29 all docs

29 docs citations

times ranked

29

994 citing authors

#	Article	IF	CITATIONS
1	Past, present, and future of soft magnetic composites. Applied Physics Reviews, 2018, 5, 031301.	5.5	328
2	Thermal conductivity, thermal diffusivity, and specific heat capacity of particle filled polypropylene. Composites Part A: Applied Science and Manufacturing, 2004, 35, 423-429.	3.8	324
3	Thermal and electrical properties of magnetite filled polymers. Composites Part A: Applied Science and Manufacturing, 2002, 33, 1041-1053.	3.8	126
4	Reversible and irreversible DC magnetization processes in the frame of magnetic, thermal and electrical properties of Fe-based composite materials. Journal of Alloys and Compounds, 2015, 645, 283-289.	2.8	31
5	Cooling behaviour of particle filled polypropylene during injection moulding process. Composites Part A: Applied Science and Manufacturing, 2005, 36, 345-351.	3.8	28
6	Theoretical and experimental approach to characteristic magnetic measurement data of polymer bonded soft magnetic composites. Journal of Applied Physics, 2009, 105, 113903.	1.1	28
7	Mechanical spectroscopy of polymer-magnetite composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 370, 278-283.	2.6	22
8	Effect of laser treatment on high and low induction loss components of grain oriented iron-silicon sheets. Journal of Magnetism and Magnetic Materials, 2010, 322, 69-72.	1.0	22
9	Magnetic properties and crystallographic textures of Fe 2.6% Si after 90% cold rolling plus different annealing. Journal of Magnetism and Magnetic Materials, 2014, 354, 105-111.	1.0	20
10	Effects of surface treatments on the hysteresis losses of GO iron silicon steel. Journal of Magnetism and Magnetic Materials, 2005, 292, 210-214.	1.0	14
11	Internal friction studies of particulate filled polypropylene. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2006, 442, 371-374.	2.6	12
12	Thermal diffusivity and mechanical properties of polymer matrix composites. Journal of Applied Physics, 2012, 112, .	1.1	12
13	Influence of filler content, particle size and temperature on thermal diffusivity of polypropyleneâ€iron silicon composites. Journal of Applied Polymer Science, 2011, 119, 732-735.	1.3	11
14	Polyurethane–magnetite composite shape-memory polymer. Journal of Thermoplastic Composite Materials, 2014, 27, 895-908.	2.6	11
15	Thermal and mechanical properties of polypropylene-iron-diamond composites. Composites Part B: Engineering, 2016, 92, 133-141.	5.9	11
16	Frequency dependence of loss-improvement of grain oriented silicon steels by laser scribing. Journal of Magnetism and Magnetic Materials, 1994, 133, 177-179.	1.0	10
17	Domain refinement and domain wall activation of surface treated Feî—'Si sheets. Journal of Magnetism and Magnetic Materials, 1996, 160, 136-138.	1.0	10
18	Crystallinity, thermal diffusivity, and electrical conductivity of carbon black filled polyamide 46. Journal of Applied Polymer Science, 2020, 137, 48882.	1.3	10

#	Article	IF	CITATIONS
19	The effect of intermediate annealing between cold rolled steps on crystallographic texture and magnetic properties of Fe–2.6% Si. Journal of Magnetism and Magnetic Materials, 2014, 362, 141-149.	1.0	9
20	Energy Losses in Composite Materials Based on Two Ferromagnets. IEEE Transactions on Magnetics, 2017, 53, 1-6.	1.2	8
21	Influence of temperature and aging on the thermal diffusivity, thermal conductivity and heat capacity of a zinc die casting alloy. Journal of Alloys and Compounds, 2019, 786, 1060-1067.	2.8	8
22	Permeability of Soft Magnetic FeCoV-Composites for Varying Filler Fractions. IEEE Transactions on Magnetics, 2010, 46, 440-442.	1.2	7
23	Damping of the Woodwind Instrument Reed Material Arundo donax L. Materials Research, 2018, 21, .	0.6	7
24	Magnetic behavior in commercial iron-silicon alloys controlled by the dislocation dynamics at temperatures below 420ÂK. Journal of Alloys and Compounds, 2021, 856, 157934.	2.8	5
25	Investigation of Magnetization Processes from the Energy Losses in Soft Magnetic Composite Materials. Acta Physica Polonica A, 2017, 131, 684-686.	0.2	3
26	Polarization-dependent fractional loss improvement of laser scribed GO FeSi steels. Journal of Magnetism and Magnetic Materials, 2008, 320, e661-e664.	1.0	2
27	How a Transitionâ€Metal(II) Chloride Interacts with a Eutectic AlCl ₃ â€Based Ionic Liquid: Insights into the Speciation of the Electrolyte and Electrodeposition of Magnetic Materials. Chemistry - an Asian Journal, 2017, 12, 2684-2693.	1.7	1
28	STUDY OF THE DAMPING BEHAVIOUR IN SAMPLES CONSISTING OF IRON ELECTRO-DEPOSITED ON COPPER IN AN IONIC LIQUID. Journal of Alloys and Compounds, 2022, , 165462.	2.8	1
29	Iron Based Soft Magnetic Composite Material Prepared By Injection Molding. Powder Metallurgy Progress, 2021, 21, 10-17.	0.6	0