Carlotta Granchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5195447/publications.pdf

Version: 2024-02-01

97 3,617 29 56
papers citations h-index g-index

102 102 5474
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	A carrier free delivery system of a monoacylglycerol lipase hydrophobic inhibitor. International Journal of Pharmaceutics, 2022, 613, 121374.	5.2	О
2	The effect of lactate dehydrogenase-A inhibition on intracellular nucleotides and mitochondrial respiration in pancreatic cancer cells. Nucleosides, Nucleotides and Nucleic Acids, 2022, 41, 1375-1385.	1.1	5
3	New Synthetic Analogues of Natural Polyphenols as Sirtuin 1-Activating Compounds. Pharmaceuticals, 2022, 15, 339.	3.8	3
4	New PIN1 inhibitors identified through a pharmacophore-driven, hierarchical consensus docking strategy. Journal of Enzyme Inhibition and Medicinal Chemistry, 2022, 37, 145-150.	5.2	7
5	ATP-citrate lyase (ACLY) inhibitors as therapeutic agents: a patenting perspective. Expert Opinion on Therapeutic Patents, 2022, 32, 731-742.	5.0	18
6	Reversible Monoacylglycerol Lipase Inhibitors: Discovery of a New Class of Benzylpiperidine Derivatives. Journal of Medicinal Chemistry, 2022, 65, 7118-7140.	6.4	6
7	Biological Activity of Natural and Synthetic Compounds. Molecules, 2022, 27, 3652.	3.8	1
8	Historical perspective of tumor glycolysis: A century with Otto Warburg. Seminars in Cancer Biology, 2022, 86, 325-333.	9.6	21
9	Targeting GLUT1 in acute myeloid leukemia to overcome cytarabine resistance Haematologica, 2021, 106, 1163-1166.	3.5	16
10	Glycoconjugated Metal Complexes as Cancer Diagnostic and Therapeutic Agents. ChemMedChem, 2021, 16, 30-64.	3.2	26
11	Design, synthesis and biological evaluation of second-generation benzoylpiperidine derivatives as reversible monoacylglycerol lipase (MAGL) inhibitors. European Journal of Medicinal Chemistry, 2021, 209, 112857.	5 . 5	24
12	An updated patent review of monoacylglycerol lipase (MAGL) inhibitors (2018-present). Expert Opinion on Therapeutic Patents, 2021, 31, 153-168.	5.0	18
13	$\hat{l}\pm /\hat{l}^2$ -Hydrolase Domain (ABHD) Inhibitors as New Potential Therapeutic Options against Lipid-Related Diseases. Journal of Medicinal Chemistry, 2021, 64, 9759-9785.	6.4	24
14	STARD3: A Prospective Target for Cancer Therapy. Cancers, 2021, 13, 4693.	3.7	11
15	Monoacylglycerol lipase (MAGL) inhibitors based on a diphenylsulfide-benzoylpiperidine scaffold. European Journal of Medicinal Chemistry, 2021, 223, 113679.	5.5	5
16	Discovery of Monoacylglycerol Lipase (MAGL) Inhibitors Based on a Pharmacophore-Guided Virtual Screening Study. Molecules, 2021, 26, 78.	3.8	6
17	Discovery of a new ATP-citrate lyase (ACLY) inhibitor identified by a pharmacophore-based virtual screening study. Journal of Biomolecular Structure and Dynamics, 2021, 39, 3996-4004.	3. 5	4
18	The dichotomous role of the glycolytic metabolism pathway in cancer metastasis: Interplay with the complex tumor microenvironment and novel therapeutic strategies. Seminars in Cancer Biology, 2020, 60, 238-248.	9.6	65

#	Article	lF	CITATIONS
19	Application of MM-PBSA Methods in Virtual Screening. Molecules, 2020, 25, 1971.	3.8	105
20	Impact of hypoxia on chemoresistance of mesothelioma mediated by the proton-coupled folate transporter, and preclinical activity of new anti-LDH-A compounds. British Journal of Cancer, 2020, 123, 644-656.	6.4	29
21	Lactate dehydrogenase A inhibition by small molecular entities: steps in the right direction. Oncoscience, 2020, 7, 76-80.	2.2	3
22	Lactate dehydrogenase A inhibition by small molecular entities: steps in the right direction. Oncoscience, 2020, 7, 76-80.	2.2	13
23	The influence of Echinacea purpurea leaf microbiota on chicoric acid level. Scientific Reports, 2019, 9, 10897.	3.3	24
24	Synthesis and Biological Evaluation of New Glycoconjugated LDH Inhibitors as Anticancer Agents. Molecules, 2019, 24, 3520.	3.8	4
25	Computationally driven discovery of phenyl(piperazin-1-yl)methanone derivatives as reversible monoacylglycerol lipase (MAGL) inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 589-596.	5.2	28
26	Virtual screening identifies a PIN1 inhibitor with possible antiovarian cancer effects. Journal of Cellular Physiology, 2019, 234, 15708-15716.	4.1	19
27	Optimization of a Benzoylpiperidine Class Identifies a Highly Potent and Selective Reversible Monoacylglycerol Lipase (MAGL) Inhibitor. Journal of Medicinal Chemistry, 2019, 62, 1932-1958.	6.4	42
28	Discovery of Allosteric Inhibition of Human ATP-Citrate Lyase. Trends in Pharmacological Sciences, 2019, 40, 364-366.	8.7	8
29	First-of-its-kind STARD ₃ Inhibitor: <i>In Silico</i> Identification and Biological Evaluation as Anticancer Agent. ACS Medicinal Chemistry Letters, 2019, 10, 475-480.	2.8	14
30	First Examples of H ₂ S-Releasing Glycoconjugates: Stereoselective Synthesis and Anticancer Activities. Bioconjugate Chemistry, 2019, 30, 614-620.	3.6	16
31	Abstract 3082: Targeting hypoxic pancreatic cancer cells with glucose conjugated lactate dehydrogenase inhibitor NHI-Glc-2. Cancer Research, 2019, 79, 3082-3082.	0.9	2
32	Abstract NT-106: PIN1: A PROMISING TARGET FOR PLATINUM-RESISTANT HIGH GRADE SEROUS OVARIAN CANCER. , 2019, , .		0
33	Abstract 3082: Targeting hypoxic pancreatic cancer cells with glucose conjugated lactate dehydrogenase inhibitor NHI-Glc-2. , 2019, , .		1
34	New Phenylethanoid Glycosides from Cistanche phelypaea and Their Activity as Inhibitors of Monoacylglycerol Lipase (MAGL). Planta Medica, 2018, 84, 710-715.	1.3	13
35	Discovery of 1,5-Diphenylpyrazole-3-Carboxamide Derivatives as Potent, Reversible, and Selective Monoacylglycerol Lipase (MAGL) Inhibitors. Journal of Medicinal Chemistry, 2018, 61, 1340-1354.	6.4	43
36	Design, Synthesis, and Evaluation of GLUT Inhibitors. Methods in Molecular Biology, 2018, 1713, 93-108.	0.9	6

#	Article	IF	CITATIONS
37	New diterpenes from Salvia pseudorosmarinus and their activity as inhibitors of monoacylglycerol lipase (MAGL). F¬toterapìâ, 2018, 130, 251-258.	2.2	10
38	An Update on Patents Covering Agents That Interfere with the Cancer Glycolytic Cascade. ChemMedChem, 2018, 13, 2251-2265.	3.2	13
39	Increased Lactate Secretion by Cancer Cells Sustains Non-cell-autonomous Adaptive Resistance to MET and EGFR Targeted Therapies. Cell Metabolism, 2018, 28, 848-865.e6.	16.2	184
40	ATP citrate lyase (ACLY) inhibitors: An anti-cancer strategy at the crossroads of glucose and lipid metabolism. European Journal of Medicinal Chemistry, 2018, 157, 1276-1291.	5.5	147
41	Rational Development of MAGL Inhibitors. Methods in Molecular Biology, 2018, 1824, 335-346.	0.9	2
42	Effect of Tumor Relevant Acidic Environment in the Interaction of a N-hydroxyindole-2-Carboxylic Derivative with the Phospholipid Bilayer. Pharmaceutical Research, 2018, 35, 175.	3.5	3
43	Liposomal delivery of a Pin1 inhibitor complexed with cyclodextrins as new therapy for high-grade serous ovarian cancer. Journal of Controlled Release, 2018, 281, 1-10.	9.9	29
44	Binding investigation and preliminary optimisation of the 3-amino-1,2,4-triazin-5(2 <i>H</i>)-one core for the development of new Fyn inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2018, 33, 956-961.	5.2	27
45	Discovery of long-chain salicylketoxime derivatives as monoacylglycerol lipase (MAGL) inhibitors. European Journal of Medicinal Chemistry, 2018, 157, 817-836.	5.5	30
46	A Guide to PIN1 Function and Mutations Across Cancers. Frontiers in Pharmacology, 2018, 9, 1477.	3.5	12
47	Activators of Sirtuin-1 and their Involvement in Cardioprotection. Current Medicinal Chemistry, 2018, 25, 4432-4456.	2.4	20
48	Identification of Lactate Dehydrogenase 5 Inhibitors using Pharmacophore- Driven Consensus Docking. Current Bioactive Compounds, 2018, 14, 197-204.	0.5	5
49	Risks and benefits related to alimentary exposure to xenoestrogens. Critical Reviews in Food Science and Nutrition, 2017, 57, 3384-3404.	10.3	39
50	Phospho-Akt overexpression is prognostic and can be used to tailor the synergistic interaction of Akt inhibitors with gemcitabine in pancreatic cancer. Journal of Hematology and Oncology, 2017, 10, 9.	17.0	65
51	Characterization of the Saffron Derivative Crocetin as an Inhibitor of Human Lactate Dehydrogenase 5 in the Antiglycolytic Approach against Cancer. Journal of Agricultural and Food Chemistry, 2017, 65, 5639-5649.	5.2	28
52	Reactive Oxygen Species Synergize To Potently and Selectively Induce Cancer Cell Death. ACS Chemical Biology, 2017, 12, 1416-1424.	3.4	18
53	Phospho-Akt: a potential resistance marker to chemotherapy and therapy-target to restore sensitivity in pancreatic cancer. European Journal of Cancer, 2017, 72, S86.	2.8	0
54	A patent review of Monoacylglycerol Lipase (MAGL) inhibitors (2013-2017). Expert Opinion on Therapeutic Patents, 2017, 27, 1341-1351.	5.0	49

#	Article	IF	CITATIONS
55	Development of terphenyl-2-methyloxazol-5(4 <i>H</i>)-one derivatives as selective reversible MAGL inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2017, 32, 1240-1252.	5.2	27
56	Constituents of Polygala flavescensssp. flavescens and Their Activity as Inhibitors of Human Lactate Dehydrogenase. Journal of Natural Products, 2017, 80, 2077-2087.	3.0	22
57	Three-Dimensional Analysis of the Interactions between hLDH5 and Its Inhibitors. Molecules, 2017, 22, 2217.	3.8	4
58	Abstract 4731: Phospho-akt: a potential resistance marker to chemotherapy and a therapy-target to restore sensitivity in pancreatic cancer. , 2017, , .		0
59	Cyclic Ketoximes as Estrogen Receptorâ€Î² Selective Agonists. ChemMedChem, 2016, 11, 1752-1761.	3.2	1
60	A Virtual Screening Study for Lactate Dehydrogenase 5 Inhibitors by Using a Pharmacophoreâ€based Approach. Molecular Informatics, 2016, 35, 434-439.	2.5	18
61	Anticancer agents interacting with membrane glucose transporters. MedChemComm, 2016, 7, 1716-1729.	3.4	66
62	Structural Optimization of 4-Chlorobenzoylpiperidine Derivatives for the Development of Potent, Reversible, and Selective Monoacylglycerol Lipase (MAGL) Inhibitors. Journal of Medicinal Chemistry, 2016, 59, 10299-10314.	6.4	42
63	4-Aryliden-2-methyloxazol-5(4 <i>H</i>)-one as a new scaffold for selective reversible MAGL inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 137-146.	5.2	21
64	Lactate dehydrogenase-A inhibition induces human glioblastoma multiforme stem cell differentiation and death. Scientific Reports, 2015, 5, 15556.	3.3	60
65	Salicylketoximes That Target Glucose Transporter 1 Restrict Energy Supply to Lung Cancer Cells. ChemMedChem, 2015, 10, 1892-1900.	3.2	19
66	Development and Validation of a Docking-Based Virtual Screening Platform for the Identification of New Lactate Dehydrogenase Inhibitors. Molecules, 2015, 20, 8772-8790.	3.8	22
67	Highly Selective Salicylketoxime-Based Estrogen Receptor β Agonists Display Antiproliferative Activities in a Glioma Model. Journal of Medicinal Chemistry, 2015, 58, 1184-1194.	6.4	22
68	Synthesis and biological evaluation of non-glucose glycoconjugated N-hydroyxindole class LDH inhibitors as anticancer agents. RSC Advances, 2015, 5, 19944-19954.	3.6	19
69	Phenylpropanoids and flavonoids from Phlomis kurdica as inhibitors of human lactate dehydrogenase. Phytochemistry, 2015, 116, 262-268.	2.9	40
70	Receptor-based virtual screening evaluation for the identification of estrogen receptor b>βligands. Journal of Enzyme Inhibition and Medicinal Chemistry, 2015, 30, 662-670.	5.2	18
71	Bioactive heterocycles containing endocyclic N-hydroxy groups. European Journal of Medicinal Chemistry, 2015, 97, 505-524.	5.5	31
72	Identification of LDH-A as a therapeutic target for cancer cell killing via (i) p53/NAD(H)-dependent and (ii) p53-independent pathways. Oncogenesis, 2014, 3, e102-e102.	4.9	101

#	Article	IF	Citations
73	An update on therapeutic opportunities offered by cancer glycolytic metabolism. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 4915-4925.	2.2	78
74	Identification and characterization of a new reversible MAGL inhibitor. Bioorganic and Medicinal Chemistry, 2014, 22, 3285-3291.	3.0	43
75	Synergistic interaction of novel lactate dehydrogenase inhibitors with gemcitabine against pancreatic cancer cells in hypoxia. British Journal of Cancer, 2014, 110, 172-182.	6.4	135
76	Estrogen receptors alpha (ERÎ \pm) and beta (ERÎ 2): Subtype-selective ligands and clinical potential. Steroids, 2014, 90, 13-29.	1.8	490
77	Identification of New Fyn Kinase Inhibitors Using a FLAP-Based Approach. Journal of Chemical Information and Modeling, 2013, 53, 2538-2547.	5.4	24
78	Assessing the differential action on cancer cells of LDH-A inhibitors based on the N-hydroxyindole-2-carboxylate (NHI) and malonic (Mal) scaffolds. Organic and Biomolecular Chemistry, 2013, 11, 6588.	2.8	44
79	Oxime-based inhibitors of glucose transporter 1 displaying antiproliferative effects in cancer cells. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 6923-6927.	2.2	42
80	Salicylaldoxime derivatives as new leads for the development of carbonic anhydrase inhibitors. Bioorganic and Medicinal Chemistry, 2013, 21, 1511-1515.	3.0	12
81	Estrogen receptor ligands: a patent review update. Expert Opinion on Therapeutic Patents, 2013, 23, 1247-1271.	5.0	29
82	Small-molecule inhibitors of human LDH5. Future Medicinal Chemistry, 2013, 5, 1967-1991.	2.3	76
83	Dual Targeting of the Warburg Effect with a Glucoseâ€Conjugated Lactate Dehydrogenase Inhibitor. ChemBioChem, 2013, 14, 2263-2267.	2.6	43
84	Anticancer Agents That Counteract Tumor Glycolysis. ChemMedChem, 2012, 7, 1318-1350.	3.2	137
85	Abstract B53: Targeting metabolic reprogramming in hypoxic models of pancreatic cancer: Preclinical emergence of novel LDH inhibitors, molecular mechanisms underlying their synergistic interaction with gemcitabine, 2012,,.		0
86	Triazole-substituted N-hydroxyindol-2-carboxylates as inhibitors of isoform 5 of human lactate dehydrogenase (hLDH5). MedChemComm, 2011, 2, 638.	3.4	22
87	Discovery of <i>N</i> -Hydroxyindole-Based Inhibitors of Human Lactate Dehydrogenase Isoform A (LDH-A) as Starvation Agents against Cancer Cells. Journal of Medicinal Chemistry, 2011, 54, 1599-1612.	6.4	195
88	N-Hydroxyindole-based inhibitors of lactate dehydrogenase against cancer cell proliferation. European Journal of Medicinal Chemistry, 2011, 46, 5398-5407.	5.5	64
89	Carbazole-containing arylcarboxamides as BACE1 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 6657-6661.	2.2	22
90	Synthesis of sulfonamide-containing N-hydroxyindole-2-carboxylates as inhibitors of human lactate dehydrogenase-isoform 5. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 7331-7336.	2.2	26

#	Article	IF	CITATIONS
91	Selective and potent agonists for estrogen receptor beta derived from molecular refinements of salicylaldoximes. European Journal of Medicinal Chemistry, 2011, 46, 2453-2462.	5.5	25
92	BACE1 inhibitory activities of enantiomerically pure, variously substituted N-(3-(4-benzhydrylpiperazin-1-yl)-2-hydroxypropyl) arylsulfonamides. Bioorganic and Medicinal Chemistry, 2010, 18, 7991-7996.	3.0	7
93	Biphenyl-Derivatives Possessing Tertiary Amino Groups as & amp; #946; -Secretase (BACE1) Inhibitors. Letters in Drug Design and Discovery, 2010, 7, 507-515.	0.7	0
94	Inhibitors of Lactate Dehydrogenase Isoforms and their Therapeutic Potentials. Current Medicinal Chemistry, 2010, 17, 672-697.	2.4	169
95	Bioreductively Activated Lysyl Oxidase Inhibitors against Hypoxic Tumours. ChemMedChem, 2009, 4, 1590-1594.	3.2	24
96	Structural Evolutions of Salicylaldoximes as Selective Agonists for Estrogen Receptor \hat{l}^2 . Journal of Medicinal Chemistry, 2009, 52, 858-867.	6.4	38
97	αâ€Naphthylaminopropanâ€2â€ol Derivatives as BACE1 Inhibitors. ChemMedChem, 2008, 3, 1530-1534.	3.2	26