Napat Vajragupta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/519531/publications.pdf

Version: 2024-02-01

687363 610901 36 588 13 24 citations h-index g-index papers 37 37 37 534 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Effect of microstructure heterogeneity on the mechanical properties of friction stir welded reduced activation ferritic/martensitic steel. Scripta Materialia, 2022, 207, 114306.	5.2	10
2	Identification of texture characteristics for improved creep behavior of a L-PBF fabricated IN738 alloy through micromechanical simulations. Modelling and Simulation in Materials Science and Engineering, 2022, 30, 055007.	2.0	1
3	Data-oriented description of texture-dependent anisotropic material behavior. Modelling and Simulation in Materials Science and Engineering, 2022, 30, 065001.	2.0	2
4	A comparative study of an isotropic and anistropic model to describe the microâ€indentation of TWIP steel. Proceedings in Applied Mathematics and Mechanics, 2021, 20, e202000224.	0.2	0
5	Influence of Temperature on Void Collapse in Single Crystal Nickel under Hydrostatic Compression. Materials, 2021, 14, 2369.	2.9	3
6	The influence of post-weld tempering temperatures on microstructure and strength in the stir zone of friction stir welded reduced activation ferritic/martensitic steel. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 814, 141224.	5.6	10
7	Deformation and Damage Assessments of Two DP1000 Steels Using a Micromechanical Modelling Method. Crystals, 2021, 11, 805.	2.2	4
8	Finite Element Modeling of Brittle and Ductile Modes in Cutting of 3C-SiC. Crystals, 2021, 11, 1286.	2.2	5
9	Influence of Crystal Plasticity Parameters on the Strain Hardening Behavior of Polycrystals. Crystals, 2021, 11, 1473.	2.2	2
10	Influence of Pore Characteristics on Anisotropic Mechanical Behavior of Laser Powder Bed Fusion–Manufactured Metal by Micromechanical Modeling. Advanced Engineering Materials, 2020, 22, 2000641.	3.5	9
11	Influence of Trapped Gas on Pore Healing under Hot Isostatic Pressing in Nickel-Base Superalloys. Crystals, 2020, 10, 1147.	2.2	12
12	Micromechanical Modeling of DP600 steel: From Microstructure to The Sheet Metal Forming Process. Procedia Manufacturing, 2020, 47, 1540-1547.	1.9	4
13	Effect of Grain Statistics on Micromechanical Modeling: The Example of Additively Manufactured Materials Examined by Electron Backscatter Diffraction. Advanced Engineering Materials, 2020, 22, 1901416.	3.5	5
14	Robust Optimization Scheme for Inverse Method for Crystal Plasticity Model Parametrization. Materials, 2020, 13, 735.	2.9	12
15	Optimized reconstruction of the crystallographic orientation density function based on a reduced set of orientations. Journal of Applied Crystallography, 2020, 53, 178-187.	4.5	16
16	Modeling Macroscopic Material Behavior With Machine Learning Algorithms Trained by Micromechanical Simulations. Frontiers in Materials, 2019, 6, .	2.4	43
17	Studying Grain Boundary Strengthening by Dislocation-Based Strain Gradient Crystal Plasticity Coupled with a Multi-Phase-Field Model. Materials, 2019, 12, 2977.	2.9	14
18	Influence of Microstructural Features on the Strain Hardening Behavior of Additively Manufactured Metallic Components. Advanced Engineering Materials, 2019, 21, 1900275.	3.5	15

#	Article	IF	Citations
19	Understanding of residual stresses in chain-die-formed dual-phase (DP) metallic components: predictive modelling and experimental validation. International Journal of Advanced Manufacturing Technology, 2019, 103, 3337-3360.	3.0	3
20	Parameterization of a Non-local Crystal Plasticity Model for Tempered Lath Martensite Using Nanoindentation and Inverse Method. Frontiers in Materials, 2019, 6, .	2.4	12
21	Kanapy: A Python package for generating complex synthetic polycrystalline microstructures. Journal of Open Source Software, 2019, 4, 1732.	4.6	18
22	Indentation size effects in spherical nanoindentation analyzed by experiment and non-local crystal plasticity. Materialia, 2018, 3, 21-30.	2.7	19
23	Fracture properties of zinc coating layers in a galvannealed steel and an electrolytically galvanized steel. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2018, 732, 320-325.	5.6	7
24	Prediction of plasticity and damage initiation behaviour of C45E + N steel by micromechanical modelling. Materials and Design, 2017, 121, 154-166.	7.0	23
25	Micromechanical modeling approach to derive the yield surface for BCC and FCC steels using statistically informed microstructure models and nonlocal crystal plasticity. Physical Mesomechanics, 2017, 20, 343-352.	1.9	15
26	Towards prediction of springback in deep drawing using a micromechanical modeling scheme. Procedia Engineering, 2017, 207, 60-65.	1.2	3
27	The second Sandia Fracture Challenge: predictions of ductile failure under quasi-static and moderate-rate dynamic loading. International Journal of Fracture, 2016, 198, 5-100.	2.2	7 3
28	The Second Blind Sandia Fracture Challenge: improved MBW model predictions for different strain rates. International Journal of Fracture, 2016, 198, 149-165.	2.2	2
29	A method to quantitatively upscale the damage initiation of dual-phase steels under various stress states from microscale to macroscale. Computational Materials Science, 2014, 94, 245-257.	3.0	56
30	Modeling the microstructure influence on fatigue life variability in structural steels. Computational Materials Science, 2014, 94, 258-272.	3.0	23
31	The modeling scheme to evaluate the influence of microstructure features on microcrack formation of DP-steel: The artificial microstructure model and its application to predict the strain hardening behavior. Computational Materials Science, 2014, 94, 198-213.	3.0	36
32	Modeling the Cold Formability of Dualphase Steels on Different Length Scales. , 2014, 3, 1050-1055.		2
33	Evaluation of the Cold Formability of Multiphase Steels by Damage Mechanics Approachesâ^—. Materialpruefung/Materials Testing, 2013, 55, 628-635.	2.2	3
34	A Numerical Study on the Mechanical Properties and the Processing Behaviour of Composite High Strength Steels. Materialpruefung/Materials Testing, 2013, 55, 336-344.	2.2	0
35	A micromechanical damage simulation of dual phase steels using XFEM. Computational Materials Science, 2012, 54, 271-279.	3.0	125
36	Micromechanical Modeling of Damage and Failure in Dual Phase Steels. Key Engineering Materials, 0, 554-557, 2369-2374.	0.4	1

3