
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5195040/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Lancet Commission on pollution and health. Lancet, The, 2018, 391, 462-512.	6.3	2,747
2	Urban air quality management-A review. Atmospheric Pollution Research, 2015, 6, 286-304.	1.8	273
3	Wind tunnel simulation studies on dispersion at urban street canyons and intersections—a review. Journal of Wind Engineering and Industrial Aerodynamics, 2005, 93, 697-717.	1.7	216
4	Mapping spatial distribution of particulate matter using Kriging and Inverse Distance Weighting at supersites of megacity Delhi. Sustainable Cities and Society, 2020, 54, 101997.	5.1	118
5	New directions: Air pollution challenges for developing megacities like Delhi. Atmospheric Environment, 2015, 122, 657-661.	1.9	117
6	Four-year assessment of ambient particulate matter and trace gases in the Delhi-NCR region of India. Sustainable Cities and Society, 2020, 54, 102003.	5.1	105
7	Indoor–outdoor concentrations of RSPM in classroom of a naturally ventilated school building near an urban traffic roadway. Atmospheric Environment, 2009, 43, 6026-6038.	1.9	100
8	The influence of odd–even car trial on fine and coarse particles in Delhi. Environmental Pollution, 2017, 225, 20-30.	3.7	97
9	Artificial neural network approach for modelling nitrogen dioxide dispersion from vehicular exhaust emissions. Ecological Modelling, 2006, 190, 99-115.	1.2	94
10	New Directions: Can a "blue sky―return to Indian megacities?. Atmospheric Environment, 2013, 71, 198-201.	1.9	91
11	Modelling of vehicular exhausts – a review. Transportation Research, Part D: Transport and Environment, 2001, 6, 179-198.	3.2	81
12	Sick building syndrome—A case study in a multistory centrally air-conditioned building in the Delhi City. Building and Environment, 2007, 42, 2797-2809.	3.0	69
13	Indoor air quality modeling for PM10, PM2.5, and PM1.0 in naturally ventilated classrooms of an urban Indian school building. Environmental Monitoring and Assessment, 2011, 176, 501-516.	1.3	64
14	Photo-chemical transport modelling of tropospheric ozone: A review. Atmospheric Environment, 2017, 159, 34-54.	1.9	63
15	Line source emission modelling. Atmospheric Environment, 2002, 36, 2083-2098.	1.9	57
16	A review of deterministic, stochastic and hybrid vehicular exhaust emission models. International Journal of Transport Management, 2004, 2, 59-74.	0.2	51
17	Indoor air quality assessment in and around urban slums of Delhi city, India. Indoor Air, 2008, 18, 488-498.	2.0	51
18	In-car particulate matter exposure across ten global cities. Science of the Total Environment, 2021, 750, 141395.	3.9	46

#	Article	IF	CITATIONS
19	Statistical behavior of carbon monoxide from vehicular exhausts in urban environments. Environmental Modelling and Software, 2007, 22, 526-535.	1.9	43
20	Principal component analysis of urban traffic characteristics and meteorological data. Transportation Research, Part D: Transport and Environment, 2003, 8, 285-297.	3.2	38
21	Modelling urban air quality using artificial neural network. Clean Technologies and Environmental Policy, 2005, 7, 116-126.	2.1	38
22	Indoor exploratory analysis of gaseous pollutants and respirable particulate matter at residential homes of Delhi, India. Atmospheric Pollution Research, 2011, 2, 337-350.	1.8	36
23	Artificial neural network based line source models for vehicular exhaust emission predictions of an urban roadway. Transportation Research, Part D: Transport and Environment, 2004, 9, 199-208.	3.2	34
24	A hybrid model for predicting carbon monoxide from vehicular exhausts in urban environments. Atmospheric Environment, 2005, 39, 4025-4040.	1.9	34
25	Suspended Particulate Matter Distribution in Rural-Industrial Satna and in Urban-Industrial South Delhi. Environmental Monitoring and Assessment, 2007, 128, 431-445.	1.3	32
26	Effect of PM _{2.5} chemical constituents on atmospheric visibility impairment. Journal of the Air and Waste Management Association, 2018, 68, 430-437.	0.9	32
27	Health Risks Associated with Heavy Metals in Fine Particulate Matter: A Case Study in Delhi City, India. Journal of Geoscience and Environment Protection, 2015, 03, 72-77.	0.2	32
28	Urban air quality in mega cities: A case study of Delhi City using vulnerability analysis. Environmental Monitoring and Assessment, 2007, 136, 257-265.	1.3	31
29	Application of extreme value theory for predicting violations of air quality standards for an urban road intersection. Transportation Research, Part D: Transport and Environment, 1999, 4, 201-216.	3.2	29
30	Statistical behavior of ozone in urban environment. Sustainable Environment Research, 2016, 26, 142-148.	2.1	29
31	Urban local air quality management framework for non-attainment areas in Indian cities. Science of the Total Environment, 2018, 619-620, 1308-1318.	3.9	29
32	Ambient air pollutant monitoring and analysis protocol for low and middle income countries: An element of comprehensive urban air quality management framework. Atmospheric Environment, 2020, 222, 117120.	1.9	28
33	Extreme Events of Reactive Ambient Air Pollutants and their Distribution Pattern at Urban Hotspots. Aerosol and Air Quality Research, 2017, 17, 394-405.	0.9	28
34	Adaptive neuro-fuzzy modeling for prediction of ambient CO concentration at urban intersections and roadways. Air Quality, Atmosphere and Health, 2010, 3, 203-212.	1.5	27
35	Model vehicle movement system in wind tunnels for exhaust dispersion studies under various urban street configurations. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90, 1051-1064.	1.7	26
36	General plume dispersion model (GPDM) for point source emission. Environmental Modeling and Assessment, 2006, 11, 267-276.	1.2	26

#	Article	IF	CITATIONS
37	A theoretical framework for the episodic-urban air quality management plan (e-UAQMP). Atmospheric Environment, 2007, 41, 7887-7894.	1.9	26
38	Simulating ozone concentrations using precursor emission inventories in Delhi – National Capital Region of India. Atmospheric Environment, 2017, 151, 117-132.	1.9	26
39	Quantitative evaluation of source interventions for urban air quality improvement - A case study of Delhi city. Atmospheric Pollution Research, 2018, 9, 577-583.	1.8	26
40	Chemical source profiles of fine particles for five different sources in Delhi. Chemosphere, 2021, 274, 129913.	4.2	25
41	Assessment of Urban Air Quality around a Heritage Site Using AERMOD: A Case Study of Amritsar City, India. Environmental Modeling and Assessment, 2015, 20, 599-608.	1.2	24
42	In-kitchen aerosol exposure in twelve cities across the globe. Environment International, 2022, 162, 107155.	4.8	24
43	Potential health risks due to in-car aerosol exposure across ten global cities. Environment International, 2021, 155, 106688.	4.8	23
44	Air quality modelling study to analyse the impact of the World Bank emission guidelines for thermal power plants in Delhi. Atmospheric Pollution Research, 2011, 2, 99-105.	1.8	20
45	Application of intervention analysis for assessing the effectiveness of CO pollution control legislation in India. Transportation Research, Part D: Transport and Environment, 1999, 4, 427-432.	3.2	17
46	A system based approach to develop hybrid model predicting extreme urban NO x and PM 2.5 concentrations. Transportation Research, Part D: Transport and Environment, 2017, 56, 141-154.	3.2	17
47	Hybrid modelling approach for effective simulation of reactive pollutants like Ozone. Atmospheric Environment, 2013, 80, 408-414.	1.9	14
48	Indoor Air Quality: Current Status, Missing Links and Future Road Map for India. Journal of Civil & Environmental Engineering, 2012, 02, .	0.1	12
49	Air pollution and plant health response-current status and future directions. Atmospheric Pollution Research, 2022, 13, 101508.	1.8	11
50	Comparative Evaluation of Air Quality Dispersion Models for PM2.5 at Air Quality Control Regions in Indian and UK Cities. Mapan - Journal of Metrology Society of India, 2015, 30, 249-260.	1.0	9
51	Computer-aided simulation of efficiency of an electrostatic precipitator. Environment International, 1996, 22, 451-462.	4.8	8
52	Diurnal and seasonal variations of carbon monoxide and nitrogen dioxide in Delhi city. International Journal of Environment and Pollution, 2003, 19, 75.	0.2	8
53	Regression-based flexible models for photochemical air pollutants in the national capital territory of megacity Delhi. Chemosphere, 2021, 272, 129611.	4.2	8
54	Real-time prediction of extreme ambient carbon monoxide concentrations due to vehicular exhaust emissions using univariate linear stochastic models. Transportation Research, Part D: Transport and Environment, 2000, 5, 59-69.	3.2	7

1

#	Article	IF	CITATIONS
55	Title is missing!. Environmental Modeling and Assessment, 2002, 7, 9-15.	1.2	7
56	Vehicle wake factor for heterogeneous traffic in urban environments. International Journal of Environment and Pollution, 2007, 30, 97.	0.2	7
57	Construction of fuzzy membership functions for urban vehicular exhaust emissions modeling. Environmental Monitoring and Assessment, 2010, 167, 691-699.	1.3	7
58	Composition, sources, and health risk assessment of particulate matter at two different elevations in Delhi city. Atmospheric Pollution Research, 2022, 13, 101295.	1.8	7
59	Formation of atmospheric nitrate under high Particulate Matter concentration. World Review of Science, Technology and Sustainable Development, 2011, 8, 148.	0.3	6
60	Performance evaluation of ISCST3, adms-urban and aermod for urban air quality management in a mega city of India. International Journal of Sustainable Development and Planning, 2014, 9, 778-793.	0.3	6
61	Short-term, real-time prediction of the extreme ambient carbon monoxide concentrations due to vehicular exhaust emissions using transfer function-noise model. Transportation Research, Part D: Transport and Environment, 2001, 6, 141-146.	3.2	5
62	Artificial neural network based carbon monoxide persistence models for episodic urban air quality management. Environmental Monitoring and Assessment, 2008, 139, 247-255.	1.3	5
63	Health benefits valuation of regulatory intervention for air pollution control in thermal power plants in Delhi, India. Journal of Environmental Planning and Management, 2009, 52, 881-899.	2.4	5
64	"Numerical modelling of PM10 dispersion in open-pit minesâ€ , . Chemosphere, 2020, 259, 127454.	4.2	5
65	Experimental Study on Color Removal from Textile Industry Wastewater Using the Rotating Biological Contactor. Practice Periodical of Hazardous, Toxic and Radioactive Waste Management, 2010, 14, 240-245.	0.4	4
66	Vertical distribution of PM10 and PM2.5 emission sources and chemical composition during winter period in Delhi city. Air Quality, Atmosphere and Health, 2022, 15, 255-271.	1.5	4
67	Organic matter determination for street dust in Delhi. Environmental Monitoring and Assessment, 2013, 185, 5251-5264.	1.3	3
68	Effects of the homogeneous traffic on vertical dispersion parameter in the near field of roadways – A wind tunnel study. Environmental Modeling and Assessment, 2005, 10, 55-62.	1.2	2
69	Case Studies of Source Apportionment from the Indian Sub-continent. Issues in Environmental Science and Technology, 2016, , 315-343.	0.4	2
70	Univariate stochastic model for predicting carbon monoxide on an urban roadway. International Journal of Environmental Engineering, 2009, 1, 223.	0.1	1
71	Artificial neural network based vehicular pollution prediction model: a practical approach for urban air quality prediction. International Journal of Environment and Waste Management, 2010, 5, 303.	0.2	1
70	Fatimation of Ambiant Air Quality in Dalhi		

52 Estimation of Ambient Air Quality in Delhi. , 0, , .

#	Article	IF	CITATIONS
73	Air Quality Management and Control. Springer Transactions in Civil and Environmental Engineering, 2021, , 59-68.	0.3	1
74	Air Quality Modelling. Springer Transactions in Civil and Environmental Engineering, 2021, , 35-57.	0.3	0