
## **Tomas Bucko**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5194920/publications.pdf Version: 2024-02-01



TOMAS RUCKO

| #  | Article                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Multiscale Modeling as a Tool for the Prediction of Catalytic Performances: The Case of <i>n</i> -Heptane Hydroconversion in a Large-Pore Zeolite. ACS Catalysis, 2022, 12, 1068-1081.                                                                    | 11.2 | 21        |
| 2  | Assessing the Accuracy of Machine Learning Thermodynamic Perturbation Theory: Density Functional Theory and Beyond. Journal of Chemical Theory and Computation, 2022, 18, 1382-1394.                                                                      | 5.3  | 9         |
| 3  | Access to sodalite cages in ion-exchanged nanosized FAU zeolites probed by hyperpolarized 129Xe NMR and DFT calculations. Microporous and Mesoporous Materials, 2022, 338, 111965.                                                                        | 4.4  | 5         |
| 4  | Methanol carbonylation over acid mordenite: Insights from ab initio molecular dynamics and machine<br>learning thermodynamic perturbation theory. Journal of Catalysis, 2021, 396, 166-178.                                                               | 6.2  | 11        |
| 5  | Hybrid localized graph kernel for machine learning energyâ€related properties of molecules and solids.<br>Journal of Computational Chemistry, 2021, 42, 1390-1401.                                                                                        | 3.3  | 2         |
| 6  | Understanding the Fundamentals of Microporosity Upgrading in Zeolites: Increasing Diffusion and Catalytic Performances. Advanced Science, 2021, 8, e2100001.                                                                                              | 11.2 | 23        |
| 7  | Ab initio molecular dynamics investigation of Cs adsorption on Mo(0Â0Â1): Beyond a single monolayer<br>coverage. Applied Surface Science, 2021, 559, 149822.                                                                                              | 6.1  | 4         |
| 8  | Anharmonic Correction to Adsorption Free Energy from DFT-Based MD Using Thermodynamic Integration. Journal of Chemical Theory and Computation, 2021, 17, 1155-1169.                                                                                       | 5.3  | 29        |
| 9  | First-principles-informed energy span and microkinetic analysis of ethanol catalytic conversion to 1,3-butadiene on MgO. Catalysis Science and Technology, 2021, 11, 6682-6694.                                                                           | 4.1  | 4         |
| 10 | Dynamic Features of Transition States for β‣cission Reactions of Alkenes over Acid Zeolites Revealed by<br>AIMD Simulations. Angewandte Chemie, 2020, 132, 19100-19104.                                                                                   | 2.0  | 9         |
| 11 | Ab Initio Calculations of Free Energy of Activation at Multiple Electronic Structure Levels Made<br>Affordable: An Effective Combination of Perturbation Theory and Machine Learning. Journal of<br>Chemical Theory and Computation, 2020, 16, 6049-6060. | 5.3  | 28        |
| 12 | Relative Humidity Facilitated Urea Particle Reaction with Salicylic Acid: A Combined In Situ<br>Spectroscopy and DFT Study. ACS Earth and Space Chemistry, 2020, 4, 1018-1028.                                                                            | 2.7  | 12        |
| 13 | Dynamic Features of Transition States for β‣cission Reactions of Alkenes over Acid Zeolites Revealed by<br>AIMD Simulations. Angewandte Chemie - International Edition, 2020, 59, 18938-18942.                                                            | 13.8 | 20        |
| 14 | Computing RPA Adsorption Enthalpies by Machine Learning Thermodynamic Perturbation Theory.<br>Journal of Chemical Theory and Computation, 2019, 15, 6333-6342.                                                                                            | 5.3  | 41        |
| 15 | Competition of Secondary versus Tertiary Carbenium Routes for the Type B Isomerization of Alkenes<br>over Acid Zeolites Quantified by Ab Initio Molecular Dynamics Simulations. ACS Catalysis, 2019, 9,<br>9813-9828.                                     | 11.2 | 35        |
| 16 | On the origin of the difference between type A and type B skeletal isomerization of alkenes catalyzed by zeolites: The crucial input of ab initio molecular dynamics. Journal of Catalysis, 2019, 373, 361-373.                                           | 6.2  | 38        |
| 17 | Bridging molecular dynamics and correlated wave-function methods for accurate finite-temperature properties. Physical Review Materials, 2019, 3, .                                                                                                        | 2.4  | 16        |
| 18 | <i>Ab initio</i> calculation of the migration free energy of oxygen diffusion in pure and samarium-doped ceria. Physical Review B, 2018, 97, .                                                                                                            | 3.2  | 26        |

| #  | Article                                                                                                                                                                                                                                                                                        | IF                     | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------|
| 19 | On the work function of the surface Mo(0 0 1) and its temperature dependence: an <i>ab initio</i> molecular dynamics study. Journal of Physics Condensed Matter, 2018, 30, 505001.                                                                                                             | 1.8                    | 3         |
| 20 | Carbon dioxide capture in 2,2′-iminodiethanol aqueous solution fromab initiomolecular dynamics<br>simulations. Journal of Chemical Physics, 2018, 149, 224103.                                                                                                                                 | 3.0                    | 7         |
| 21 | Transition state optimization of periodic systems using delocalized internal coordinates. Theoretical Chemistry Accounts, 2018, 137, 1.                                                                                                                                                        | 1.4                    | 12        |
| 22 | Effect of alkaline metal cations on the ionic structure of cryolite melts: <i>Ab-initio</i> NpT MD study. Journal of Chemical Physics, 2018, 148, 064501.                                                                                                                                      | 3.0                    | 8         |
| 23 | The dependence on ammonia pretreatment of Nâ^'O activation by Co(II) sites in zeolites: a DFT and ab<br>initio molecular dynamics study. Journal of Molecular Modeling, 2017, 23, 160.                                                                                                         | 1.8                    | 6         |
| 24 | Carbon dioxide capture in 2-aminoethanol aqueous solution from <i>ab initio</i> molecular dynamics simulations. Journal of Chemical Physics, 2017, 146, .                                                                                                                                      | 3.0                    | 9         |
| 25 | Catalytic conversion of ethanol to 1,3-butadiene on MgO: A comprehensive mechanism elucidation using DFT calculations. Journal of Catalysis, 2017, 346, 78-91.                                                                                                                                 | 6.2                    | 70        |
| 26 | Dissociative iodomethane adsorption on Ag-MOR and the formation of Agl clusters: an ab initio molecular dynamics study. Physical Chemistry Chemical Physics, 2017, 19, 27530-27543.                                                                                                            | 2.8                    | 41        |
| 27 | A DFT investigation of the adsorption of iodine compounds and water in H-, Na-, Ag-, and Cu- mordenite.<br>Journal of Chemical Physics, 2016, 144, 244705.                                                                                                                                     | 3.0                    | 61        |
| 28 | On the structure of crystalline and molten cryolite: Insights from the <i>ab initio</i> molecular dynamics in NpT ensemble. Journal of Chemical Physics, 2016, 144, 064502.                                                                                                                    | 3.0                    | 18        |
| 29 | A Fractionally Ionic Approach to Polarizability and van der Waals Many-Body Dispersion Calculations.<br>Journal of Chemical Theory and Computation, 2016, 12, 5920-5930.                                                                                                                       | 5.3                    | 90        |
| 30 | <i>C</i> <sub>6</sub> Coefficients and Dipole Polarizabilities for All Atoms and Many Ions in Rows 1–6 of the Periodic Table. Journal of Chemical Theory and Computation, 2016, 12, 3603-3613.                                                                                                 | 5.3                    | 76        |
| 31 | Catalytic methyl mercaptan coupling to ethylene in chabazite: DFT study of the first C C bond<br>formation. Applied Catalysis B: Environmental, 2016, 187, 195-203.                                                                                                                            | 20.2                   | 13        |
| 32 | Many-body dispersion corrections for periodic systems: an efficient reciprocal space implementation.<br>Journal of Physics Condensed Matter, 2016, 28, 045201.                                                                                                                                 | 1.8                    | 86        |
| 33 | Negative thermal expansion of <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML"&gt;<mml:msub><mml:mi>ScF</mml:mi><mml:mn>3Insights from density-functional molecular dynamics in the isothermal-isobaric ensemble. Physical<br/>Review B. 2015. 92</mml:mn></mml:msub></mml:math<br> | :mn <sub>3.2</sub> /mm | ıl:mşub>  |
| 34 | The role of spatial constraints and entropy in the adsorption and transformation of hydrocarbons catalyzed by zeolites. Journal of Catalysis, 2015, 329, 32-48.                                                                                                                                | 6.2                    | 61        |
| 35 | Extending the applicability of the Tkatchenko-Scheffler dispersion correction via iterative Hirshfeld partitioning. Journal of Chemical Physics, 2014, 141, 034114.                                                                                                                            | 3.0                    | 174       |
| 36 | Understanding the Adsorption of CuPc and ZnPc on Noble Metal Surfaces by Combining<br>Quantum-Mechanical Modelling and Photoelectron Spectroscopy. Molecules, 2014, 19, 2969-2992.                                                                                                             | 3.8                    | 69        |

| #  | Article                                                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Improved Density Dependent Correction for the Description of London Dispersion Forces. Journal of Chemical Theory and Computation, 2013, 9, 4293-4299.                                                                                                                                      | 5.3 | 183       |
| 38 | Effect of the Al Siting on the Structure of Co(II) and Cu(II) Cationic Sites in Ferrierite. A Periodic DFT Molecular Dynamics and FTIR Study. Journal of Physical Chemistry C, 2013, 117, 3958-3968.                                                                                        | 3.1 | 42        |
| 39 | Tkatchenko-Scheffler van der Waals correction method with and without self-consistent screening applied to solids. Physical Review B, 2013, 87, .                                                                                                                                           | 3.2 | 293       |
| 40 | Understanding Structure and Bonding of Multilayered Metal–Organic Nanostructures. Journal of<br>Physical Chemistry C, 2013, 117, 3055-3061.                                                                                                                                                 | 3.1 | 36        |
| 41 | Spin crossover transition of Fe(phen)2(NCS)2: periodic dispersion-corrected density-functional study.<br>Physical Chemistry Chemical Physics, 2012, 14, 5389.                                                                                                                               | 2.8 | 57        |
| 42 | Simulation of Aqueous Dissolution of Lithium Manganate Spinel from First Principles. Journal of<br>Physical Chemistry C, 2012, 116, 4050-4059.                                                                                                                                              | 3.1 | 57        |
| 43 | Assessment of ten DFT methods in predicting structures of sheet silicates: Importance of dispersion corrections. Journal of Chemical Physics, 2012, 137, 114105.                                                                                                                            | 3.0 | 117       |
| 44 | Van der Waals interactions between hydrocarbon molecules and zeolites: Periodic calculations at<br>different levels of theory, from density functional theory to the random phase approximation and<br>MÃ,ller-Plesset perturbation theory. Journal of Chemical Physics, 2012, 137, 114111. | 3.0 | 123       |
| 45 | Ab Initio Study of Structure and Interconversion of Native Cellulose Phases. Journal of Physical Chemistry A, 2011, 115, 10097-10105.                                                                                                                                                       | 2.5 | 41        |
| 46 | Dehydrogenation of propane over ZnMOR. Static and dynamic reaction energy diagram. Journal of Catalysis, 2011, 277, 104-116.                                                                                                                                                                | 6.2 | 43        |
| 47 | Monomolecular cracking of propane over acidic chabazite: An ab initio molecular dynamics and transition path sampling study. Journal of Catalysis, 2011, 279, 220-228.                                                                                                                      | 6.2 | 98        |
| 48 | N2O decomposition over Fe-zeolites: Structure of the active sites and the origin of the distinct<br>reactivity of Fe-ferrierite, Fe-ZSM-5, and Fe-beta. A combined periodic DFT and multispectral study.<br>Journal of Catalysis, 2010, 272, 262-274.                                       | 6.2 | 119       |
| 49 | A density-functional study of the adsorption of methane-thiol on the (111) surfaces of the Ni-group metals: II. Vibrational spectroscopy. Journal of Physics Condensed Matter, 2010, 22, 265006.                                                                                            | 1.8 | 68        |
| 50 | Entropy effects in hydrocarbon conversion reactions: free-energy integrations and transition-path sampling. Journal of Physics Condensed Matter, 2010, 22, 384201.                                                                                                                          | 1.8 | 24        |
| 51 | A density functional study of the adsorption of methane-thiol on the (111) surfaces of the Ni-group metals: I. Molecular and dissociative adsorption. Journal of Physics Condensed Matter, 2010, 22, 265005.                                                                                | 1.8 | 19        |
| 52 | Simultaneously Understanding the Geometric and Electronic Structure of Anthraceneselenolate on<br>Au(111): A Combined Theoretical and Experimental Study. Journal of Physical Chemistry C, 2010, 114,<br>2677-2684.                                                                         | 3.1 | 34        |
| 53 | Improved Description of the Structure of Molecular and Layered Crystals: Ab Initio DFT Calculations with van der Waals Corrections. Journal of Physical Chemistry A, 2010, 114, 11814-11824.                                                                                                | 2.5 | 895       |
| 54 | Mechanism of alkane dehydrogenation catalyzed by acidic zeolites: <i>Ab initio</i> transition path sampling. Journal of Chemical Physics, 2009, 131, 214508.                                                                                                                                | 3.0 | 55        |

| #  | Article                                                                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Molecular adsorption and metal-support interaction for transition-metal clusters in zeolites: NO<br>adsorption on Pdnâ€^(n=1–6) clusters in mordenite. Journal of Chemical Physics, 2009, 130, 104503.           | 3.0  | 26        |
| 56 | On the structure and dynamics of secondary n-alkyl cations. Journal of Chemical Physics, 2009, 131, 104314.                                                                                                      | 3.0  | 14        |
| 57 | Electronic Structure of Selfâ€Assembled Monolayers on Au(111) Surfaces: The Impact of Backbone<br>Polarizability. Advanced Functional Materials, 2009, 19, 3766-3775.                                            | 14.9 | 37        |
| 58 | Interaction of NO molecules with Pd clusters: <i>Ab initio</i> density–functional study. Journal of<br>Computational Chemistry, 2009, 30, 1910-1922.                                                             | 3.3  | 20        |
| 59 | Effects of Lattice Expansion on the Reactivity of a One-Dimensional Oxide. Journal of the American<br>Chemical Society, 2009, 131, 3253-3259.                                                                    | 13.7 | 12        |
| 60 | Activity and Reactivity of Fe2+ Cations in the Zeolite. Ab Initio Free-Energy MD Calculation of the N2O<br>Dissociation over Iron-Exchanged Ferrierite. Journal of Physical Chemistry C, 2009, 113, 18807-18816. | 3.1  | 9         |
| 61 | <i>Ab initio</i> calculations of free-energy reaction barriers. Journal of Physics Condensed Matter, 2008, 20, 064211.                                                                                           | 1.8  | 54        |
| 62 | N2O decomposition on iron exchanged ferrierite. A combined periodic DFT and static IN-SITU FTIR study.<br>Studies in Surface Science and Catalysis, 2008, , 713-716.                                             | 1.5  | 0         |
| 63 | Adsorption of NO in Fe2+-Exchanged Ferrierite. A Density Functional Theory Study. Journal of Physical<br>Chemistry C, 2007, 111, 586-595.                                                                        | 3.1  | 37        |
| 64 | Multiple Adsorption of NO on Fe2+Cations in the α- and β-Positions of Ferrierite:  An Experimental and<br>Density Functional Study. Journal of Physical Chemistry C, 2007, 111, 9393-9402.                       | 3.1  | 41        |
| 65 | Carbocation Branching Observed in a Simulation. Journal of Physical Chemistry A, 2007, 111, 5945-5947.                                                                                                           | 2.5  | 14        |
| 66 | A DFT Study of Activation of H2 and СÐ4 over Zn-MOR. Studies in Surface Science and Catalysis, 2007, 172, 397-400.                                                                                               | 1.5  | 0         |
| 67 | Proton exchange of small hydrocarbons over acidic chabazite: Ab initio study of entropic effects.<br>Journal of Catalysis, 2007, 250, 171-183.                                                                   | 6.2  | 51        |
| 68 | Acid-based Catalysis in Zeolites Investigated by Density-Functional Methods. Topics in Catalysis, 2006,<br>37, 41-54.                                                                                            | 2.8  | 46        |
| 69 | A DFT study of the adsorption of butane in MOR and activation on the Lewis center. Studies in Surface<br>Science and Catalysis, 2005, 158, 939-946.                                                              | 1.5  | 0         |
| 70 | Ab initio vibrational spectroscopy of molecular adsorbates in mordenite. Studies in Surface Science and Catalysis, 2005, 158, 601-608.                                                                           | 1.5  | 3         |
| 71 | Adsorption and Vibrational Spectroscopy of CO on Mordenite:Â Ab initio Density-Functional Study.<br>Journal of Physical Chemistry B, 2005, 109, 7345-7357.                                                       | 2.6  | 32        |
| 72 | Geometry optimization of periodic systems using internal coordinates. Journal of Chemical Physics, 2005, 122, 124508.                                                                                            | 3.0  | 128       |

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Theoretical Investigation of CO Interaction with Copper Sites in Zeolites:Â Periodic DFT and Hybrid<br>Quantum Mechanical/Interatomic Potential Function Study. Journal of Physical Chemistry B, 2005, 109,<br>9631-9638.            | 2.6 | 77        |
| 74 | A Density Functional Theory Study of Molecular and Dissociative Adsorption of H2on Active Sites in Mordenite. Journal of Physical Chemistry B, 2005, 109, 22491-22501.                                                               | 2.6 | 45        |
| 75 | Periodic DFT Calculations of the Stability of Al/Si Substitutions and Extraframework Zn2+Cations in<br>Mordenite and Reaction Pathway for the Dissociation of H2and CH4. Journal of Physical Chemistry B,<br>2005, 109, 20361-20369. | 2.6 | 56        |
| 76 | Adsorption and vibrational spectroscopy of ammonia at mordenite: Ab initio study. Journal of Chemical Physics, 2004, 120, 10263-10277.                                                                                               | 3.0 | 39        |
| 77 | Ab Initio Simulation of Lewis Sites in Mordenite and Comparative Study of the Strength of Active Sites via CO Adsorption. Journal of Physical Chemistry B, 2004, 108, 13656-13666.                                                   | 2.6 | 57        |
| 78 | Active Sites for the Vapor Phase Beckmann Rearrangement over Mordenite:Â An ab Initio Study. Journal<br>of Physical Chemistry A, 2004, 108, 11388-11397.                                                                             | 2.5 | 46        |
| 79 | Defect sites at the (001) surface of mordenite:â€,Anab initiostudy. Journal of Chemical Physics, 2003, 118,<br>8437-8445.                                                                                                            | 3.0 | 22        |
| 80 | Ab initio density functional investigation of the (001) surface of mordenite. Journal of Chemical Physics, 2002, 117, 7295-7305.                                                                                                     | 3.0 | 48        |
| 81 | Tkatchenko-Scheffler van der Waals correction method with and without self-consistent screening applied to solids. , 0, .                                                                                                            |     | 1         |