List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5194598/publications.pdf Version: 2024-02-01

ΖΗΙ ΥΠΑΝ

#	Article	IF	CITATIONS
1	Tumor acid microenvironment-activated self-targeting & splitting gold nanoassembly for tumor chemo-radiotherapy. Bioactive Materials, 2022, 7, 377-388.	15.6	11
2	Acid-responsive aggregated SERS nanoparticles for improved tumor diagnosis. Materials Chemistry Frontiers, 2022, 6, 644-651.	5.9	2
3	A nano-catalyst promoting endogenous NO production to enhance chemotherapy efficacy by vascular normalization. Materials Chemistry Frontiers, 2022, 6, 1269-1281.	5.9	3
4	A CuS-Based Nanoplatform Catalyzing NO Generation for Tumor Vessel Improvement and Efficient Chemotherapy. ACS Applied Nano Materials, 2022, 5, 6901-6910.	5.0	4
5	Construction of an AuHQ nano-sensitizer for enhanced radiotherapy efficacy through remolding tumor vasculature. Journal of Materials Chemistry B, 2021, 9, 4365-4379.	5.8	5
6	A pH-responsive Pt-based nanoradiosensitizer for enhanced radiotherapy <i>via</i> oxidative stress amplification. Nanoscale, 2021, 13, 13735-13745.	5.6	11
7	An optimal brain tumor detection by convolutional neural network and Enhanced Sparrow Search Algorithm. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2021, 235, 459-469.	1.8	40
8	An oxidation responsive nano-radiosensitizer increases radiotherapy efficacy by remolding tumor vasculature. Biomaterials Science, 2021, 9, 6308-6324.	5.4	15
9	Construction of a pH/TGase "Dual Key―Responsive Gold Nano-radiosensitizer with Liver Tumor-Targeting Ability. ACS Biomaterials Science and Engineering, 2021, 7, 3434-3445.	5.2	5
10	A facile composite nanoparticle promoted by photoelectron transfer and consumption for tumor combination therapy. Materials Chemistry Frontiers, 2020, 4, 3047-3056.	5.9	6
11	Probabilistic decompositionâ€based security constrained transmission expansion planning incorporating distributed series reactor. IET Generation, Transmission and Distribution, 2020, 14, 3478-3487.	2.5	149
12	NIR Lightâ€Driven Bi ₂ Se ₃ â€Based Nanoreactor with "Three in One―Heminâ€Assis Cascade Catalysis for Synergetic Cancer Therapy. Advanced Functional Materials, 2020, 30, 2006883.	sted 14.9	39
13	Developed Coyote Optimization Algorithm and its application to optimal parameters estimation of PEMFC model. Energy Reports, 2020, 6, 1106-1117.	5.1	72
14	Strategies and challenges to improve the performance of tumor-associated active targeting. Journal of Materials Chemistry B, 2020, 8, 3959-3971.	5.8	39
15	High Voltage Gain DC/DC Converter Using Coupled Inductor and VM Techniques. IEEE Access, 2020, 8, 131975-131987.	4.2	130
16	Optimal parameter estimation for <scp>PEMFC</scp> using modified monarch butterfly optimization. International Journal of Energy Research, 2020, 44, 8427-8441.	4.5	22
17	<i>In situ</i> self-assembled biosupramolecular porphyrin nanofibers for enhancing photodynamic therapy in tumors. Nanoscale, 2020, 12, 11119-11129.	5.6	18
18	Single NIR Laser-Activated Multifunctional Nanoparticles for Cascaded Photothermal and Oxygen-Independent Photodynamic Therapy. Nano-Micro Letters, 2019, 11, 68.	27.0	56

#	Article	IF	CITATIONS
19	Zwitterionic chitooligosaccharide-modified ink-blue titanium dioxide nanoparticles with inherent immune activation for enhanced photothermal therapy. Biomaterials Science, 2019, 7, 5027-5034.	5.4	12
20	Dual pH-responsive "charge-reversal like―gold nanoparticles to enhance tumor retention for chemo-radiotherapy. Nano Research, 2019, 12, 2815-2826.	10.4	29
21	Chitosan sulfate inhibits angiogenesis <i>via</i> blocking the VEGF/VEGFR2 pathway and suppresses tumor growth <i>in vivo</i> . Biomaterials Science, 2019, 7, 1584-1597.	5.4	19
22	A glutathione responsive nitric oxide release system based on charge-reversal chitosan nanoparticles for enhancing synergistic effect against multidrug resistance tumor. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 20, 102015.	3.3	24
23	Fluorescence-enhanced covalent organic framework nanosystem for tumor imaging and photothermal therapy. Nanoscale, 2019, 11, 10429-10438.	5.6	37
24	TGase-induced intracellular aggregation of Fe ₃ O ₄ nanoparticles for increased retention and enhanced <i>T</i> ₂ MRI. Materials Chemistry Frontiers, 2019, 3, 1365-1374.	5.9	9
25	Near-infrared-light induced nanoparticles with enhanced tumor tissue penetration and intelligent drug release. Acta Biomaterialia, 2019, 90, 314-323.	8.3	31
26	One-pot synthesis of acid-induced <i>in situ</i> aggregating theranostic gold nanoparticles with enhanced retention in tumor cells. Biomaterials Science, 2019, 7, 2009-2022.	5.4	13
27	Reversible Shielding between Dual Ligands for Enhanced Tumor Accumulation of ZnPc-Loaded Micelles. Nano Letters, 2019, 19, 1665-1674.	9.1	46
28	Multivalent nanoparticles for personalized theranostics based on tumor receptor distribution behavior. Nanoscale, 2019, 11, 5005-5013.	5.6	19
29	pH-Sensitive assembly/disassembly gold nanoparticles with the potential of tumor diagnosis and treatment. Science China Chemistry, 2019, 62, 105-117.	8.2	15
30	Heteromultivalent peptide recognition by co-assembly of cyclodextrin and calixarene amphiphiles enables inhibition of amyloid fibrillation. Nature Chemistry, 2019, 11, 86-93.	13.6	148
31	Study on the effectiveness of ligand reversible shielding strategy in targeted delivery and tumor therapy. Acta Biomaterialia, 2019, 83, 349-358.	8.3	13
32	A conveniently synthesized Pt (IV) conjugated alginate nanoparticle with ligand self-shielded property for targeting treatment of hepatic carcinoma. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 15, 153-163.	3.3	12
33	The systematic evaluation of size-dependent toxicity and multi-time biodistribution of gold nanoparticles. Colloids and Surfaces B: Biointerfaces, 2018, 167, 260-266.	5.0	100
34	Convenient preparation of charge-adaptive chitosan nanomedicines for extended blood circulation and accelerated endosomal escape. Nano Research, 2018, 11, 4278-4292.	10.4	29
35	Pharmacodynamics in Alzheimer's disease model rats of a bifunctional peptide with the potential to accelerate the degradation and reduce the toxicity of amyloid β-Cu fibrils. Acta Biomaterialia, 2018, 65, 327-338.	8.3	16
36	The effects of ligand valency and density on the targeting ability of multivalent nanoparticles based on negatively charged chitosan nanoparticles. Colloids and Surfaces B: Biointerfaces, 2018, 161, 508-518.	5.0	21

#	Article	IF	CITATIONS
37	Construction of a Linear Cell Cross-Linker with Multivalent Glycyrrhetinic Acid Ligands for Rapid Formation of Hepatocyte Spheroids. ACS Biomaterials Science and Engineering, 2018, 4, 3570-3577.	5.2	0
38	"Three-in-One―Multifunctional Gatekeeper Gated Mesoporous Silica Nanoparticles for Intracellular pH-Activated Targeted Cancer Therapy. ACS Applied Bio Materials, 2018, 1, 572-580.	4.6	12
39	pH-Sensitive Reversible Programmed Targeting Strategy by the Self-Assembly/Disassembly of Gold Nanoparticles. ACS Applied Materials & Interfaces, 2017, 9, 16767-16777.	8.0	26
40	The study of angiogenesis stimulated by multivalent peptide ligand-modified alginate. Colloids and Surfaces B: Biointerfaces, 2017, 154, 383-390.	5.0	24
41	An intelligent re-shieldable targeting system for enhanced tumor accumulation. Journal of Controlled Release, 2017, 268, 1-9.	9.9	25
42	Hemoperfusion Method for Removing Endotoxin. Regenerative Medicine, Artificial Cells and Nanomedicine, 2017, , 265-284.	0.1	0
43	Facile fabrication of poly(acrylic acid) coated chitosan nanoparticles with improved stability in biological environments. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 112, 148-154.	4.3	20
44	Tripeptide GGH as the Inhibitor of Copper-Amyloid-Î ² -Mediated Redox Reaction and Toxicity. ACS Chemical Neuroscience, 2016, 7, 1255-1263.	3.5	43
45	Study of a Bifunctional Aβ Aggregation Inhibitor with the Abilities of Antiamyloid-β and Copper Chelation. Biomacromolecules, 2016, 17, 661-668.	5.4	37
46	Comparation of activity against AÎ ² aggregation between RR and LPFFD. Chinese Journal of Polymer Science (English Edition), 2015, 33, 1009-1017.	3.8	6
47	Study on the association between CTD peptides and zinc(ii)-dipicolylamine appended beta-cyclodextrin. RSC Advances, 2015, 5, 80434-80440.	3.6	3
48	Fabrication of thermo-sensitive complex micelles for reversible cell targeting. Journal of Materials Science: Materials in Medicine, 2015, 26, 255.	3.6	7
49	Controllable targeted system based on pH-dependent thermo-responsive nanoparticles. Colloids and Surfaces B: Biointerfaces, 2015, 135, 802-810.	5.0	9
50	Dual-peptide-modified alginate hydrogels for the promotion of angiogenesis. Science China Chemistry, 2015, 58, 1866-1874.	8.2	19
51	Peptide REDVâ€modified polysaccharide hydrogel with endothelial cell selectivity for the promotion of angiogenesis. Journal of Biomedical Materials Research - Part A, 2015, 103, 1703-1712.	4.0	66
52	Shieldable Tumor Targeting Based on pH Responsive Self-Assembly/Disassembly of Gold Nanoparticles. ACS Applied Materials & Interfaces, 2014, 6, 17865-17876.	8.0	65
53	Studies on antineoplastic effect by adjusting ratios of targeted-ligand and antitumor drug. Chinese Journal of Polymer Science (English Edition), 2014, 32, 540-550.	3.8	2
54	Facile fabrication of core cross-linked micelles by RAFT polymerization and enzyme-mediated reaction. Colloids and Surfaces B: Biointerfaces, 2014, 118, 298-305.	5.0	12

#	Article	IF	CITATIONS
55	Preparation of enzymatically cross-linked sulfated chitosan hydrogel and its potential application in thick tissue engineering. Science China Chemistry, 2013, 56, 1701-1709.	8.2	16
56	Ethylene glycol oligomer modified-sodium alginate for efficiently improving the drug loading and the tumor therapeutic effect. Journal of Materials Chemistry B, 2013, 1, 5933.	5.8	13
57	Functional alginate nanoparticles for efficient intracellular release of doxorubicin and hepatoma carcinoma cell targeting therapy. International Journal of Pharmaceutics, 2013, 451, 1-11.	5.2	98
58	Self-assembly and liver targeting of sulfated chitosan nanoparticles functionalized with glycyrrhetinic acid. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 870-879.	3.3	102
59	Promotion of microvasculature formation in alginate composite hydrogels by an immobilized peptide GYICSRG. Science China Chemistry, 2012, 55, 1781-1787.	8.2	4
60	Doxorubicin-loaded glycyrrhetinic acid-modified alginate nanoparticles for liver tumor chemotherapy. Biomaterials, 2012, 33, 2187-2196.	11.4	247
61	Affinity adsorption mechanism studies of adsorbents C1-Zn(II) for uremic middle molecular peptides containing Asp-Phe-Leu-Ala-Glu sequence. Science China Chemistry, 2011, 54, 375-379.	8.2	Ο
62	Qualitative and quantitative relationships between affinity constants from model study and real adsorption data. Science Bulletin, 2010, 55, 3248-3252.	1.7	2
63	Application of surface plasmon resonance in screening adsorbents and explaining adsorption phenomena using model polymers. Science Bulletin, 2010, 55, 3644-3647.	1.7	1
64	Cytotoxicity of liver targeted drug-loaded alginate nanoparticles. Science in China Series B: Chemistry, 2009, 52, 1382-1387.	0.8	22
65	Glycyrrhetinic acid-modified nanoparticles for drug delivery: Preparation and characterization. Science Bulletin, 2009, 54, 3121-3126.	1.7	22
66	The effect of \hat{I}_{\pm} -helix comformation on interaction between model oligopeptides and polymers. Science Bulletin, 2008, 53, 473-476.	1.7	1
67	Synthesis and characterization of polypeptide containing liver-targeting group. Polymer International, 2006, 55, 1057-1062.	3.1	8
68	Synthesis and characterization of a functionalized amphiphilic diblock copolymer: MePEG-b-poly(DL-lactide-co-RS-Î ² -malic acid). Colloid and Polymer Science, 2006, 285, 273-281.	2.1	10
69	Endotoxin adsorbent using dimethylamine ligands. Biomaterials, 2005, 26, 2741-2747.	11.4	27
70	Biodegradable polylactide/poly(ethylene glycol)/polylactide triblock copolymer micelles as anticancer drug carriers. Journal of Applied Polymer Science, 2001, 80, 1976-1982.	2.6	88