

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5194145/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	GelNB molecular coating as a biophysical barrier to isolate intestinal irritating metabolites and regulate intestinal microbial homeostasis in the treatment of inflammatory bowel disease. Bioactive Materials, 2023, 19, 251-267.	8.6	10
2	Reference values for plasma neurofilament light chain in healthy Chinese children. Clinical Chemistry and Laboratory Medicine, 2022, 60, e10-e12.	1.4	11
3	Biomoleculesâ€releasing click chemistryâ€based bioadhesives for repairing acetabular labrum tears. Journal of Orthopaedic Research, 2022, 40, 2646-2655.	1.2	3
4	Identification of an Ultrathin Osteochondral Interface Tissue with Specific Nanostructure at the Human Knee Joint. Nano Letters, 2022, 22, 2309-2319.	4.5	18
5	Polyglutamic Acidâ€Based Elastic and Tough Adhesive Patch Promotes Tissue Regeneration through In Situ Macrophage Modulation. Advanced Science, 2022, 9, e2106115.	5.6	14
6	Biomimetic macroporous hydrogel with a triple-network structure for full-thickness skin regeneration. Applied Materials Today, 2022, 27, 101442.	2.3	7
7	Rational design of biodegradable thermoplastic polyurethanes for tissue repair. Bioactive Materials, 2022, 15, 250-271.	8.6	39
8	Regional-specific meniscal extracellular matrix hydrogels and their effects on cell–matrix interactions of fibrochondrocytes. Biomedical Materials (Bristol), 2022, 17, 014105.	1.7	13
9	Polydopamine nanoparticles and hyaluronic acid hydrogels for mussel-inspired tissue adhesive nanocomposites. Materials Science and Engineering C, 2022, 134, 112589.	3.8	15
10	Enhancing CRISPR/Cas gene editing through modulating cellular mechanical properties for cancer therapy. Nature Nanotechnology, 2022, 17, 777-787.	15.6	80
11	Dynamic loading enhances chondrogenesis of human chondrocytes within a biodegradable resilient hydrogel. Biomaterials Science, 2021, 9, 5011-5024.	2.6	14
12	Mechanical expansion microscopy. Methods in Cell Biology, 2021, 161, 125-146.	0.5	6
13	In vitro comparison of harvesting site effects on cardiac extracellular matrix hydrogels. Journal of Biomedical Materials Research - Part A, 2021, 109, 1922-1930.	2.1	3
14	Biomechanical properties of acellular scar ECM during the acute to chronic stages of myocardial infarction. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 116, 104342.	1.5	10
15	3D printing of chemical-empowered tendon stem/progenitor cells for functional tissue repair. Biomaterials, 2021, 271, 120722.	5.7	18
16	Multifunctional peptide-conjugated nanocarriers for pulp regeneration in a full-length human tooth root. Acta Biomaterialia, 2021, 127, 252-265.	4.1	8
17	Anxiety and depression in school-age patients with spinal muscular atrophy: a cross-sectional study. Orphanet Journal of Rare Diseases, 2021, 16, 385.	1.2	10
18	A long-term retaining molecular coating for corneal regeneration. Bioactive Materials, 2021, 6, 4447-4454.	8.6	24

#	Article	IF	CITATIONS
19	Current advances in biodegradable synthetic polymer based cardiac patches. Journal of Biomedical Materials Research - Part A, 2020, 108, 972-983.	2.1	37
20	Targeting downstream subcellular YAP activity as a function of matrix stiffness with Verteporfin-encapsulated chitosan microsphere attenuates osteoarthritis. Biomaterials, 2020, 232, 119724.	5.7	50
21	Rapid printing of bio-inspired 3D tissue constructs for skin regeneration. Biomaterials, 2020, 258, 120287.	5.7	149
22	An interleukin-4-loaded bi-layer 3D printed scaffold promotes osteochondral regeneration. Acta Biomaterialia, 2020, 117, 246-260.	4.1	60
23	Preseeding of Mesenchymal Stem Cells Increases Integration of an iPSC-Derived CM Sheet into a Cardiac Matrix. ACS Biomaterials Science and Engineering, 2020, 6, 6808-6818.	2.6	3
24	Tissue-Adhesive Paint of Silk Microparticles for Articular Surface Cartilage Regeneration. ACS Applied Materials & Interfaces, 2020, 12, 22467-22478.	4.0	21
25	Exploring NIR Aza-BODIPY-Based Polarity Sensitive Probes with ON-and-OFF Fluorescence Switching in Pluronic Nanoparticles. Polymers, 2020, 12, 540.	2.0	22
26	"Allâ€inâ€One―Gel System for Whole Procedure of Stemâ€Cell Amplification and Tissue Engineering. Small, 2020, 16, e1906539.	5.2	26
27	Comparative Proteomics Profiling Illuminates the Fruitlet Abscission Mechanism of Sweet Cherry as Induced by Embryo Abortion. International Journal of Molecular Sciences, 2020, 21, 1200.	1.8	14
28	Glutathione-responsive biodegradable polyurethane nanoparticles for lung cancer treatment. Journal of Controlled Release, 2020, 321, 363-371.	4.8	62
29	Mussel-inspired bioadhesives in healthcare: design parameters, current trends, and future perspectives. Biomaterials Science, 2020, 8, 1240-1255.	2.6	80
30	A Biocompatible and Nearâ€Infrared Liposome for In Vivo Ultrasound‣witchable Fluorescence Imaging. Advanced Healthcare Materials, 2020, 9, e1901457.	3.9	23
31	Tissue Engineering: "Allâ€inâ€One―Gel System for Whole Procedure of Stemâ€Cell Amplification and Tissue Engineering (Small 16/2020). Small, 2020, 16, 2070088.	5.2	Ο
32	Temperature-sensitive polymeric nanogels encapsulating with β-cyclodextrin and ICG complex for high-resolution deep-tissue ultrasound-switchable fluorescence imaging. Nano Research, 2020, 13, 1100-1110.	5.8	15
33	Optimizing Anisotropic Polyurethane Scaffolds to Mechanically Match with Native Myocardium. ACS Biomaterials Science and Engineering, 2020, 6, 2757-2769.	2.6	14
34	Biodegradable Zwitterionic Polymer Coatings for Magnesium Alloy Stents. Langmuir, 2019, 35, 1421-1429.	1.6	26
35	Recent advances in high-strength and elastic hydrogels for 3D printing in biomedical applications. Acta Biomaterialia, 2019, 95, 50-59.	4.1	112
36	A strongly adhesive hemostatic hydrogel for the repair of arterial and heart bleeds. Nature Communications, 2019, 10, 2060.	5.8	517

#	Article	IF	CITATIONS
37	3D bioprinting of vascular conduits for pediatric congenital heart repairs. Translational Research, 2019, 211, 35-45.	2.2	22
38	Cardiac tissue-derived extracellular matrix scaffolds for myocardial repair: advantages and challenges. International Journal of Energy Production and Management, 2019, 6, 185-199.	1.9	75
39	Epicardial prestrained confinement and residual stresses: a newly observed heart ventricle confinement interface. Journal of the Royal Society Interface, 2019, 16, 20190028.	1.5	10
40	Heart valve tissueâ€derived hydrogels: Preparation and characterization of mitral valve chordae, aortic valve, and mitral valve gels. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 1732-1740.	1.6	12
41	Highly Elastic Biodegradable Single-Network Hydrogel for Cell Printing. ACS Applied Materials & Interfaces, 2018, 10, 9969-9979.	4.0	90
42	Evaluation of photochemistry reaction kinetics to pattern bioactive proteins on hydrogels for biological applications. Bioactive Materials, 2018, 3, 64-73.	8.6	20
43	Biodegradable Nanoparticles Enhanced Adhesiveness of Mussel‣ike Hydrogels at Tissue Interface. Advanced Healthcare Materials, 2018, 7, e1701069.	3.9	47
44	Decellularization in Heart Valve Tissue Engineering. , 2018, , 289-317.		2
45	In silico simulation and in vitro evaluation of an elastomeric scaffold using ultrasonic shear wave imaging. IOP Conference Series: Materials Science and Engineering, 2018, 322, 022035.	0.3	Ο
46	Quantitative Analysis of Tissue Damage Evolution in Porcine Liver With Interrupted Mechanical Testing Under Tension, Compression, and Shear. Journal of Biomechanical Engineering, 2018, 140, .	0.6	10
47	Enhancing anti-thrombogenicity of biodegradable polyurethanes through drug molecule incorporation. Journal of Materials Chemistry B, 2018, 6, 7288-7297.	2.9	17
48	Low-Initial-Modulus Biodegradable Polyurethane Elastomers for Soft Tissue Regeneration. ACS Applied Materials & Interfaces, 2017, 9, 2169-2180.	4.0	69
49	Patterning Bioactive Proteins or Peptides on Hydrogel Using Photochemistry for Biological Applications. Journal of Visualized Experiments, 2017, , .	0.2	1
50	An optical probe for detecting chondrocyte apoptosis in response to mechanical injury. Scientific Reports, 2017, 7, 10906.	1.6	8
51	Seeking Convergence to advance Biomaterials Science and Translation by Chinese Association for Biomaterials. Bioactive Materials, 2017, 2, 281-286.	8.6	0
52	Asymmetric Sensory-Motor Regeneration of Transected Peripheral Nerves Using Molecular Guidance Cues. Scientific Reports, 2017, 7, 14323.	1.6	14
53	Skeletal muscle derived stem cells microintegrated into a biodegradable elastomer for reconstruction of the abdominal wall. Biomaterials, 2017, 113, 31-41.	5.7	30
54	A Dual-Modality System for Both Multi-Color Ultrasound-Switchable Fluorescence and Ultrasound Imaging. International Journal of Molecular Sciences, 2017, 18, 323.	1.8	15

#	Article	IF	CITATIONS
55	The Mechanisms and Biomedical Applications of an NIR BODIPY-Based Switchable Fluorescent Probe. International Journal of Molecular Sciences, 2017, 18, 384.	1.8	22
56	Lung protection by inhalation of exogenous solubilized extracellular matrix. PLoS ONE, 2017, 12, e0171165.	1.1	14
57	Synthesis and characterization of conductive, biodegradable, elastomeric polyurethanes for biomedical applications. Journal of Biomedical Materials Research - Part A, 2016, 104, 2305-2314.	2.1	32
58	New generation ICC-based contrast agents for ultrasound-switchable fluorescence imaging. Scientific Reports, 2016, 6, 35942.	1.6	25
59	Enhancing cell infiltration of electrospun fibrous scaffolds in tissue regeneration. Bioactive Materials, 2016, 1, 56-64.	8.6	199
60	Development of dopant-free conductive bioelastomers. Scientific Reports, 2016, 6, 34451.	1.6	35
61	Abdominal wall reconstruction by a regionally distinct biocomposite of extracellular matrix digest and a biodegradable elastomer. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, 748-761.	1.3	25
62	High-Resolution Ultrasound-Switchable Fluorescence Imaging in Centimeter-Deep Tissue Phantoms with High Signal-To-Noise Ratio and High Sensitivity via Novel Contrast Agents. PLoS ONE, 2016, 11, e0165963.	1.1	25
63	Fabrication of elastomeric scaffolds with curvilinear fibrous structures for heart valve leaflet engineering. Journal of Biomedical Materials Research - Part A, 2015, 103, 3101-3106.	2.1	36
64	Establishing Early Functional Perfusion and Structure in Tissue Engineered Cardiac Constructs. Critical Reviews in Biomedical Engineering, 2015, 43, 455-471.	0.5	6
65	Tailoring Material Properties of Cardiac Matrix Hydrogels To Induce Endothelial Differentiation of Human Mesenchymal Stem Cells. ACS Applied Materials & Interfaces, 2015, 7, 11053-11061.	4.0	60
66	An injectable extracellular matrix derived hydrogel for meniscus repair and regeneration. Acta Biomaterialia, 2015, 16, 49-59.	4.1	168
67	Guanidinium based blend anion exchange membranes for direct methanol alkaline fuel cells (DMAFCs). Journal of Power Sources, 2015, 300, 95-103.	4.0	37
68	Improved properties of bone and cartilage tissue from 3D inkjet-bioprinted human mesenchymal stem cells by simultaneous deposition and photocrosslinking in PEG-GelMA. Biotechnology Letters, 2015, 37, 2349-2355.	1.1	278
69	Triggerable Degradation of Polyurethanes for Tissue Engineering Applications. ACS Applied Materials & Interfaces, 2015, 7, 20377-20388.	4.0	55
70	Improve the Signal-to-Noise Ratio of Ultrasound-Switchable Fluorescence Technique for Deep-tissue High-resolution Fluorescence Imaging. , 2015, , .		0
71	Stability study of Ultrasound-Switchable Fluorescence contrast agents: ICG-encapsulated poly (N-isopropylacrylamide) nanoparticles. , 2015, , .		0
72	Direct writing of bio-functional coatings for cardiovascular applications. Journal of Biomedical Materials Research - Part A, 2014, 102, n/a-n/a.	2.1	6

#	Article	IF	CITATIONS
73	Development of Ultrasound-Switchable Fluorescence Imaging Contrast Agents Based on Thermosensitive Polymers and Nanoparticles. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 67-80.	1.9	20
74	Synthesis of guanidinium-based anion exchange membranes and their stability assessment. Polymers for Advanced Technologies, 2014, 25, 108-116.	1.6	39
75	Nonthrombogenic, Biodegradable Elastomeric Polyurethanes with Variable Sulfobetaine Content. ACS Applied Materials & Interfaces, 2014, 6, 22796-22806.	4.0	65
76	Electrospun biodegradable elastic polyurethane scaffolds with dipyridamole release for small diameter vascular grafts. Acta Biomaterialia, 2014, 10, 4618-4628.	4.1	109
77	Collagenase-Labile Polyurethane Urea Synthesis and Processing into Hollow Fiber Membranes. Biomacromolecules, 2014, 15, 2924-2932.	2.6	14
78	The effect of polymer degradation time on functional outcomes of temporary elastic patch support in ischemic cardiomyopathy. Biomaterials, 2013, 34, 7353-7363.	5.7	51
79	Non-invasive characterization of polyurethane-based tissue constructs in a rat abdominal repair model using high frequency ultrasound elasticity imaging. Biomaterials, 2013, 34, 2701-2709.	5.7	42
80	Biodegradable elastic patch plasty ameliorates left ventricular adverse remodeling after ischemia–reperfusion injury: A preclinical study of a porous polyurethane material in a porcine model. Journal of Thoracic and Cardiovascular Surgery, 2013, 146, 391-399.e1.	0.4	43
81	Surface Modification of a Biodegradable Magnesium Alloy with Phosphorylcholine (PC) and Sulfobetaine (SB) Functional Macromolecules for Reduced Thrombogenicity and Acute Corrosion Resistance. Langmuir, 2013, 29, 8320-8327.	1.6	62
82	Initial Assessment of Effects of Diabetes and Advanced Age on the Construction and Efficacy of Human Adipose-Derived Stem Cell-Based Tissue Engineered Blood Vessels. , 2013, , .		0
83	An Elastomeric Patch Electrospun from a Blended Solution of Dermal Extracellular Matrix and Biodegradable Polyurethane for Rat Abdominal Wall Repair. Tissue Engineering - Part C: Methods, 2012, 18, 122-132.	1.1	51
84	Synthesis, Characterization, and Paclitaxel Release from a Biodegradable, Elastomeric, Poly(ester) Tj ETQq0 0 0 rg 2012, 13, 3686-3694.	gBT /Overl 2.6	ock 10 Tf 50 56
85	Microstructural manipulation of electrospun scaffolds for specific bending stiffness for heart valve tissue engineering. Acta Biomaterialia, 2012, 8, 4268-4277.	4.1	75
86	Biodegradable Polyurethane Ureas with Variable Polyester or Polycarbonate Soft Segments: Effects of Crystallinity, Molecular Weight, and Composition on Mechanical Properties. Biomacromolecules, 2011, 12, 3265-3274.	2.6	163
87	Mechanical properties and in vivo behavior of a biodegradable synthetic polymer microfiber–extracellular matrix hydrogel biohybrid scaffold. Biomaterials, 2011, 32, 3387-3394.	5.7	188
88	Rapid Engineered Small Diameter Vascular Grafts from Smooth Muscle Cells. Cardiovascular Engineering and Technology, 2011, 2, 149-159.	0.7	7
89	Elastomeric Electrospun Polyurethane Scaffolds: The Interrelationship Between Fabrication Conditions, Fiber Topology, and Mechanical Properties. Advanced Materials, 2011, 23, 106-111.	11.1	73
90	<i>In vivo</i> performance of a phospholipidâ€coated bioerodable elastomeric graft for smallâ€diameter vascular applications. Journal of Biomedical Materials Research - Part A, 2011, 96A, 436-448.	2.1	95

#	Article	IF	CITATIONS
91	Spatial control of gene expression within a scaffold by localized inducer release. Biomaterials, 2011, 32, 3062-3071.	5.7	19
92	Morphological and mechanical characteristics of the reconstructed rat abdominal wall following use of a wet electrospun biodegradable polyurethane elastomer scaffold. Biomaterials, 2010, 31, 3253-3265.	5.7	75
93	Tailoring the degradation kinetics of poly(ester carbonate urethane)urea thermoplastic elastomers for tissue engineering scaffolds. Biomaterials, 2010, 31, 4249-4258.	5.7	165
94	Pericyte-based human tissue engineered vascular grafts. Biomaterials, 2010, 31, 8235-8244.	5.7	137
95	A bilayered elastomeric scaffold for tissue engineering of small diameter vascular grafts. Acta Biomaterialia, 2010, 6, 110-122.	4.1	258
96	<i>In Vivo</i> Assessment of a Tissue-Engineered Vascular Graft Combining a Biodegradable Elastomeric Scaffold and Muscle-Derived Stem Cells in a Rat Model. Tissue Engineering - Part A, 2010, 16, 1215-1223.	1.6	137
97	Thermally Responsive Injectable Hydrogel Incorporating Methacrylate-Polylactide for Hydrolytic Lability. Biomacromolecules, 2010, 11, 1873-1881.	2.6	84
98	Pericyte-Based Human Tissue Engineered Vascular Grafts: In Vivo Feasibility Assessment. , 2010, , .		0
99	Microfibrillar Elastic Polymer Wrapping of Rat Vena Cava for the Study of Engineered Arterial Vein Grafts. , 2010, , .		0
100	A small diameter, fibrous vascular conduit generated from a poly(ester urethane)urea and phospholipid polymer blend. Biomaterials, 2009, 30, 2457-2467.	5.7	148
101	Evaluation of a biodegradable scaffold―and stem cellâ€based tissueâ€engineered vascular graft in rat and pig models. FASEB Journal, 2009, 23, 418.2.	0.2	0
102	Collagenâ€coated polylactide microcarriers/chitosan hydrogel composite: Injectable scaffold for cartilage regeneration. Journal of Biomedical Materials Research - Part A, 2008, 85A, 628-637.	2.1	79
103	Transient elastic support for vein grafts using a constricting microfibrillar polymer wrap. Biomaterials, 2008, 29, 3213-3220.	5.7	46
104	Tissue-to-cellular level deformation coupling in cell micro-integrated elastomeric scaffolds. Biomaterials, 2008, 29, 3228-3236.	5.7	74
105	Generating Elastic, Biodegradable Polyurethane/Poly(lactide- <i>co</i> -glycolide) Fibrous Sheets with Controlled Antibiotic Release via Two-Stream Electrospinning. Biomacromolecules, 2008, 9, 1200-1207.	2.6	107
106	Protein-Reactive, Thermoresponsive Copolymers with High Flexibility and Biodegradability. Biomacromolecules, 2008, 9, 1283-1292.	2.6	86
107	Engineering Vein Grafts Using an External Electrospun Biodegradable Polymer Wrap to Gradually Impose Arterial Circumferential Wall Stress Over Time. , 2007, , 135.		0
108	Cellular Deformations in Microintegrated Electrospun Poly (Ester Urethane) Urea Scaffolds Under Biaxial Stretch. , 2007, , .		0

Yi Hong

#	Article	IF	CITATIONS
109	Rings of Hydrogel Fabricated by a Micro-Transfer Technique. Macromolecular Rapid Communications, 2007, 28, 567-571.	2.0	11
110	Covalently crosslinked chitosan hydrogel: Properties of in vitro degradation and chondrocyte encapsulation. Acta Biomaterialia, 2007, 3, 23-31.	4.1	205
111	Fabrication of cell microintegrated blood vessel constructs through electrohydrodynamic atomization. Biomaterials, 2007, 28, 2738-2746.	5.7	186
112	Covalently crosslinked chitosan hydrogel formed at neutral pH and body temperature. Journal of Biomedical Materials Research - Part A, 2006, 79A, 913-922.	2.1	53
113	Collagen-coated polylactide microspheres as chondrocyte microcarriers. Biomaterials, 2005, 26, 6305-6313.	5.7	155
114	Preparation of porous polylactide microspheres by emulsion-solvent evaporation based on solution induced phase separation. Polymers for Advanced Technologies, 2005, 16, 622-627.	1.6	71
115	Photografting of poly(hydroxylethyl acrylate) onto porous polyurethane scaffolds to improve their endothelial cell compatibility. Journal of Biomaterials Science, Polymer Edition, 2003, 14, 937-950.	1.9	28
116	Multifunctional Peptide-Conjugated Nanocarriers for Pulp Regeneration in a Full-Length Human Tooth Root. SSRN Electronic Journal, 0, , .	0.4	0