A Mark Settles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5194068/publications.pdf

Version: 2024-02-01

48 papers

2,114 citations

304602 22 h-index 243529 44 g-index

55 all docs

55 docs citations

55 times ranked 2583 citing authors

#	Article	IF	CITATIONS
1	Sec-Independent Protein Translocation by the Maize Hcf106 Protein. Science, 1997, 278, 1467-1470.	6.0	268
2	Steady-state transposon mutagenesis in inbred maize. Plant Journal, 2005, 44, 52-61.	2.8	234
3	The maize W22 genome provides a foundation for functional genomics and transposon biology. Nature Genetics, 2018, 50, 1282-1288.	9.4	183
4	Sequence-indexed mutations in maize using the UniformMu transposon-tagging population. BMC Genomics, 2007, 8, 116.	1.2	124
5	Development of a calibration to predict maize seed composition using single kernel near infrared spectroscopy. Journal of Cereal Science, 2006, 43, 236-243.	1.8	103
6	Molecular analysis of high-copy insertion sites in maize. Nucleic Acids Research, 2004, 32, e54-e54.	6.5	82
7	Highâ€Throughput Nearâ€Infrared Reflectance Spectroscopy for Predicting Quantitative and Qualitative Composition Phenotypes of Individual Maize Kernels. Cereal Chemistry, 2009, 86, 556-564.	1.1	78
8	Old and new pathways of protein export in chloroplasts and bacteria. Trends in Cell Biology, 1998, 8, 494-501.	3.6	71
9	Maize <i>Rough Endosperm3</i> Encodes an RNA Splicing Factor Required for Endosperm Cell Differentiation and Has a Nonautonomous Effect on Embryo Development Â. Plant Cell, 2011, 23, 4280-4297.	3.1	71
10	Near-Infrared Reflectance Spectroscopy Predicts Protein, Starch, and Seed Weight in Intact Seeds of Common Bean (Phaseolus vulgaris L.). Journal of Agricultural and Food Chemistry, 2010, 58, 702-706.	2.4	70
11	Ionomic Characterization of Maize Kernels in the Intermated B73 $\tilde{A}-$ Mo17 Population. Crop Science, 2013, 53, 208-220.	0.8	65
12	The Maize (i>Viviparous 8 < /i> Locus, Encoding a Putative ALTERED MERISTEM PROGRAM1-Like Peptidase, Regulates Abscisic Acid Accumulation and Coordinates Embryo and Endosperm Development Â. Plant Physiology, 2008, 146, 1193-1206.	2.3	61
13	The maizeviviparous 15 locus encodes the molybdopterin synthase small subunit. Plant Journal, 2006, 45, 264-274.	2.8	50
14	The maizeViviparous10/Viviparous13locus encodes theCnx1gene required for molybdenum cofactor biosynthesis. Plant Journal, 2006, 45, 250-263.	2.8	41
15	The Thylakoid ΔpH-dependent Pathway Machinery Facilitates RR-independent N-Tail Protein Integration. Journal of Biological Chemistry, 2000, 275, 23483-23490.	1.6	38
16	Analysis of Maize (Zea mays) Kernel Density and Volume Using Microcomputed Tomography and Single-Kernel Near-Infrared Spectroscopy. Journal of Agricultural and Food Chemistry, 2013, 61, 10872-10880.	2.4	38
17	Chloroplast-localized 6-phosphogluconate dehydrogenase is critical for maize endosperm starch accumulation. Journal of Experimental Botany, 2013, 64, 2231-2242.	2.4	38
18	Aberrant splicing in maize <i>rough endosperm3</i> reveals a conserved role for U12 splicing in eukaryotic multicellular development. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2195-E2204.	3.3	38

#	Article	IF	Citations
19	Effects of longâ€term exposure to elevated temperature on <i>Zea mays</i> endosperm development during grain fill. Plant Journal, 2019, 99, 23-40.	2.8	37
20	Genome assembly and population genomic analysis provide insights into the evolution of modern sweet corn. Nature Communications, 2021, 12, 1227.	5.8	37
21	Functions of maize genes encoding pyruvate phosphate dikinase in developing endosperm. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E24-E33.	3.3	35
22	Quantitative trait loci associated with soybean seed weight and composition under different phosphorus levels. Journal of Integrative Plant Biology, 2018, 60, 232-241.	4.1	32
23	RNA Binding Motif Protein 48 Is Required for U12 Splicing and Maize Endosperm Differentiation. Plant Cell, 2019, 31, 715-733.	3.1	27
24	Duplication and Suppression of Chloroplast Protein Translocation Genes in Maize. Genetics, 2001, 157, 349-360.	1.2	25
25	Enhanced Single Seed Trait Predictions in Soybean (<i>Glycine max</i>) and Robust Calibration Model Transfer with Near-Infrared Reflectance Spectroscopy. Journal of Agricultural and Food Chemistry, 2016, 64, 1079-1086.	2.4	23
26	Engineering 6-phosphogluconate dehydrogenase improves grain yield in heat-stressed maize. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 33177-33185.	3.3	22
27	NATURAL VARIATION IN SEED COMPOSITION OF 91 COMMON BEAN GENOTYPES AND THEIR POSSIBLE ASSOCIATION WITH SEED COAT COLOR. Journal of Plant Nutrition, 2013, 36, 772-780.	0.9	21
28	Maize <i>defective kernel5</i> is a bacterial TamB homologue required for chloroplast envelope biogenesis. Journal of Cell Biology, 2019, 218, 2638-2658.	2.3	19
29	Protein, weight, and oil prediction by singleâ€seed nearâ€infrared spectroscopy for selection of seed quality and yield traits in pea (<scp><i>Pisum sativum</i></scp>). Journal of the Science of Food and Agriculture, 2020, 100, 3488-3497.	1.7	19
30	Parent-of-Origin-Effect <i>rough endosperm</i> Mutants in Maize. Genetics, 2016, 204, 221-231.	1.2	16
31	Quantification of seed ionome variation in 90 diverse soybean (<i>Glycine max</i>) lines. Journal of Plant Nutrition, 2017, 40, 2808-2817.	0.9	16
32	A novel genome-scale repeat finder geared towards transposons. Bioinformatics, 2008, 24, 468-476.	1.8	14
33	Efficient Molecular Marker Design Using the MaizeGDB Mo17 SNPs and Indels Track. G3: Genes, Genomes, Genetics, 2014, 4, 1143-1145.	0.8	12
34	Ovary abortion is prevalent in diverse maize inbred lines and is under genetic control. Scientific Reports, 2018, 8, 13032.	1.6	12
35	Competitive Growth Assay of Mutagenized Chlamydomonas reinhardtii Compatible With the International Space Station Veggie Plant Growth Chamber. Frontiers in Plant Science, 2020, 11, 631.	1.7	12
36	Transposon Tagging and Reverse Genetics. Biotechnology in Agriculture and Forestry, 2009, , 143-159.	0.2	10

3

#	Article	IF	CITATIONS
37	Characterization of pea seed nutritional value within a diverse population of Pisum sativum. PLoS ONE, 2021, 16, e0259565.	1.1	10
38	Distributed simple sequence repeat markers for efficient mapping from maize public mutagenesis populations. Theoretical and Applied Genetics, 2010, 121, 697-704.	1.8	9
39	Modulation of early maize seedling performance via priming under sub-optimal temperatures. PLoS ONE, 2018, 13, e0206861.	1.1	9
40	Seed Phenomics., 2015,, 67-82.		8
41	EMS Mutagenesis of Maize Pollen. Methods in Molecular Biology, 2020, 2122, 25-33.	0.4	6
42	Ion transport in rat tongue epithelium in vitro: A developmental study. Pharmacology Biochemistry and Behavior, 1993, 46, 83-88.	1.3	5
43	Opportunities and Challenges Grow from <i>Arabidopsis</i>Genome Sequencing . Genome Research, 1998, 8, 83-85.	2.4	5
44	Restorer-of-Fertility Mutations Recovered in Transposon-Active Lines of S Male-Sterile Maize. G3: Genes, Genomes, Genetics, 2018, 8, 291-302.	0.8	5
45	Classification approaches for sorting maize (<i>Zea mays</i> subsp. <i>mays</i>) haploids using singleâ€kernel nearâ€infrared spectroscopy. Plant Breeding, 2020, 139, 1103-1112.	1.0	4
46	Accelerating Biological Insight for Understudied Genes. Integrative and Comparative Biology, 2021, , .	0.9	2
47	Genetic Screens to Target Embryo and Endosperm Pathways in Arabidopsis and Maize. Methods in Molecular Biology, 2020, 2122, 3-14.	0.4	1
48	RepFrag. , 2010, , .		0