
Haruki Nagakawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5193932/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly Efficient Hydrogen Production in the Photoreforming of Lignocellulosic Biomass Catalyzed by Cu,Inâ€Doped ZnS Derived from ZIFâ€8. Advanced Materials Interfaces, 2022, 9, 2101581.	1.9	6
2	Highly Efficient Photocatalytic Degradation of Hydrogen Sulfide in the Gas Phase Using Anatase/TiO ₂ (B) Nanotubes. ACS Omega, 2022, 7, 11946-11955.	1.6	15
3	Elucidating the Factors Affecting Hydrogen Production Activity Using a CdS/TiO ₂ Type-II Composite Photocatalyst. ACS Omega, 2021, 6, 4395-4400.	1.6	17
4	Photoreforming of Organic Waste into Hydrogen Using a Thermally Radiative CdO <i>_x</i> /CdS/SiC Photocatalyst. ACS Applied Materials & Interfaces, 2021, 13, 47511-47519.	4.0	34
5	Photoreforming of Lignocellulosic Biomass into Hydrogen under Sunlight in the Presence of Thermally Radiative CdS/SiC Composite Photocatalyst. ACS Applied Energy Materials, 2021, 4, 1059-1062.	2.5	18
6	<i>In situ</i> synthesis of CdS/CdWO ₄ nanorods core–shell composite <i>via</i> acid dissolution. RSC Advances, 2020, 10, 105-111.	1.7	8
7	Elucidation of the electron energy structure of TiO ₂ (B) and anatase photocatalysts through analysis of electron trap density. RSC Advances, 2020, 10, 18496-18501.	1.7	11
8	Water Purification in Dark Conditions Using Photocatalytic Light-leakage Type Plastic Optical Fiber. Chemistry Letters, 2020, 49, 199-202.	0.7	1
9	Over All Water Splitting By Anti-Photocorrosive Core-Shell Composite Sulfide Photocatalyst Synthesized Via Acid Dissolution Process. ECS Meeting Abstracts, 2020, MA2020-02, 3114-3114.	0.0	0
10	Efficient hydrogen production using photosystem I enhanced by artificial light harvesting dye. Photochemical and Photobiological Sciences, 2019, 18, 309-313.	1.6	25
11	Enhancement of Photocurrent by Integration of an Artificial Light-Harvesting Antenna with a Photosystem I Photovoltaic Device. ACS Applied Energy Materials, 2019, 2, 3986-3990.	2.5	18
12	Fabrication of CdS/β-SiC/TiO2 tri-composites that exploit hole- and electron-transfer processes for photocatalytic hydrogen production under visible light. International Journal of Hydrogen Energy, 2018, 43, 2207-2211.	3.8	18
13	Photocatalytic Oxidation of Aqueous Ammonia to Nitrite and Nitrate Ions on Zeolite–TiO ₂ . Chemistry Letters, 2018, 47, 1542-1544.	0.7	4
14	Effective Photocatalytic Hydrogen Evolution by Cascadal Carrier Transfer in the Reverse Direction. ACS Omega, 2018, 3, 12770-12777.	1.6	14
15	Visible-Light Overall Water Splitting by CdS/WO ₃ /CdWO ₄ Tricomposite Photocatalyst Suppressing Photocorrosion. ACS Applied Energy Materials, 2018, 1, 6730-6735.	2.5	43