
Xing-Long Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5193696/publications.pdf Version: 2024-02-01

XINC-LONG 7HU

#	Article	IF	CITATIONS
1	Dense GeV electron–positron pairs generated by lasers in near-critical-density plasmas. Nature Communications, 2016, 7, 13686.	12.8	131
2	Extremely brilliant GeV γ-rays from a two-stage laser-plasma accelerator. Science Advances, 2020, 6, eaaz7240.	10.3	53
3	Bright attosecond <i>î³</i> -ray pulses from nonlinear Compton scattering with laser-illuminated compound targets. Applied Physics Letters, 2018, 112, .	3.3	44
4	Enhanced electron trapping and <i>Ĵ³</i> ray emission by ultra-intense laser irradiating a near-critical-density plasma filled gold cone. New Journal of Physics, 2015, 17, 053039.	2.9	39
5	Generation of GeV positron and <i>l³</i> -photon beams with controllable angular momentum by intense lasers. New Journal of Physics, 2018, 20, 083013.	2.9	36
6	Ultra-bright Î ³ -ray emission and dense positron production from two laser-driven colliding foils. Scientific Reports, 2017, 7, 17312.	3.3	28
7	All-optical bright γ-ray and dense positron source by laser driven plasmas-filled cone. Optics Express, 2016, 24, 15978.	3.4	26
8	Collimated GeV attosecond electron–positron bunches from a plasma channel driven by 10 PW lasers. Matter and Radiation at Extremes, 2019, 4, .	3.9	20
9	Single-Cycle Terawatt Twisted-Light Pulses at Midinfrared Wavelengths above 10 <i>µ</i> m. Physical Review Applied, 2019, 12, .	3.8	18
10	Efficient generation of relativistic near-single-cycle mid-infrared pulses in plasmas. Light: Science and Applications, 2020, 9, 46.	16.6	18
11	All-optical quasi-monoenergetic GeV positron bunch generation by twisted laser fields. Communications Physics, 2022, 5, .	5.3	16
12	Generation of 100-MeV Attosecond Electron Bunches with Terawatt Few-Cycle Laser Pulses. Physical Review Applied, 2021, 15, .	3.8	11
13	Generation of single-cycle relativistic infrared pulses at wavelengths above 20 <i>µ</i> m from density-tailored plasmas. Matter and Radiation at Extremes, 2022, 7, .	3.9	9
14	Ultra-bright, high-energy-density <i>γ-</i> ray emission from a gas-filled gold cone-capillary. Physics of Plasmas, 2015, 22, .	1.9	7
15	Ion Acoustic Shock Wave Formation and Ion Acceleration in the Interactions of Pair Jets with Electron–ion Plasmas. Astrophysical Journal, 2022, 931, 36.	4.5	4
16	Relativistic-induced opacity of electron–positron plasmas. Plasma Physics and Controlled Fusion, 2021, 63, 045010.	2.1	1