
Swee-Hin Teoh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5193636/publications.pdf Version: 2024-02-01

SWEE-HIN TEOH

#	Article	IF	CITATIONS
1	Marine collagen scaffolds in tissue engineering. Current Opinion in Biotechnology, 2022, 74, 92-103.	6.6	63
2	Biologization of Pcl-Mesh Using Platelet Rich Fibrin (Prf) Enhances Its Regenerative Potential In Vitro. International Journal of Molecular Sciences, 2021, 22, 2159.	4.1	11
3	Synergistic Effect of PVDF-Coated PCL-TCP Scaffolds and Pulsed Electromagnetic Field on Osteogenesis. International Journal of Molecular Sciences, 2021, 22, 6438.	4.1	16
4	Self-Assembled Nanofibrous Marine Collagen Matrix Accelerates Healing of Full-Thickness Wounds. ACS Applied Bio Materials, 2021, 4, 7044-7058.	4.6	7
5	Effects of Pulsed Electromagnetic Field Intensity on Mesenchymal Stem Cells. Bioelectricity, 2021, 3, 186-196.	1.1	2
6	Comparative Craniofacial Bone Regeneration Capacities of Mesenchymal Stem Cells Derived from Human Neural Crest Stem Cells and Bone Marrow. ACS Biomaterials Science and Engineering, 2021, 7, 207-221.	5.2	10
7	In Vivo Efficacy of Neutrophil-Mediated Bone Regeneration Using a Rabbit Calvarial Defect Model. International Journal of Molecular Sciences, 2021, 22, 13016.	4.1	10
8	Bioinspired approaches to toughen calcium phosphate-based ceramics for bone repair Journal of the Mechanical Behavior of Biomedical Materials, 2020, 112, 104078.	3.1	37
9	Bioengineered threeâ€dimensional transparent eggshell as a chicken embryo experimentation platform for biomedical research. Engineering Reports, 2020, 2, e12092.	1.7	3
10	Evaluation of decellularized tilapia skin as a tissue engineering scaffold. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 1779-1791.	2.7	32
11	Effects of Electromagnetic Field on Proliferation, Differentiation, and Mineralization of MC3T3 Cells. Tissue Engineering - Part C: Methods, 2019, 25, 114-125.	2.1	19
12	Ultra-low percolation threshold POSS-PCL/graphene electrically conductive polymer: Neural tissue engineering nanocomposites for neurosurgery. Materials Science and Engineering C, 2019, 104, 109915.	7.3	35
13	Three-Dimensional Printed Polycaprolactone Scaffolds for Bone Regeneration Success and Future Perspective. Tissue Engineering - Part A, 2019, 25, 931-935.	3.1	37
14	A polycaprolactone-β-tricalcium phosphate–heparan sulphate device for cranioplasty. Journal of Cranio-Maxillo-Facial Surgery, 2019, 47, 341-348.	1.7	14
15	Biomimetic fetal rotation bioreactor for engineering bone tissues—Effect of cyclic strains on upregulation of osteogenic gene expression. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e2039-e2050.	2.7	16
16	Review: bioreactor design towards generation of relevant engineered tissues: focus on clinical translation. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e7-e22.	2.7	45
17	Neutrophilâ€mediated enhancement of angiogenesis and osteogenesis in a novel triple cell coâ€culture model with endothelial cells and osteoblasts. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e1221-e1236.	2.7	34
18	Endothelial colony forming cells from human umbilical cord blood improved severe erectile dysfunction in obese type II diabetic rats. Life Sciences, 2018, 207, 272-283.	4.3	4

Swee-Hin Teoh

#	Article	IF	CITATIONS
19	<i>In Vivo</i> Immune Responses of Cross-Linked Electrospun Tilapia Collagen Membrane . Tissue Engineering - Part A, 2017, 23, 1110-1119.	3.1	26
20	Nanomaterial scaffolds to regenerate musculoskeletal tissue: signals from within for neovessel formation. Drug Discovery Today, 2017, 22, 1385-1391.	6.4	27
21	<i>In vitro</i> cyclic compressive loads potentiate early osteogenic events in engineered bone tissue. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2017, 105, 2366-2375.	3.4	35
22	Development and Characterization of Organic Electronic Scaffolds for Bone Tissue Engineering. Advanced Healthcare Materials, 2016, 5, 1505-1512.	7.6	39
23	50 Years of Biomaterials Research in Singapore. , 2016, , 157-177.		Ο
24	Cryomilling for the fabrication of doxorubicin-containing silica-nanoparticle/polycaprolactone nanocomposite films. Nanoscale, 2016, 8, 2568-2574.	5.6	12
25	A Selective and Purification-Free Strategy for Labeling Adherent Cells with Inorganic Nanoparticles. ACS Applied Materials & Interfaces, 2016, 8, 6336-6343.	8.0	5
26	Effect of Heat-Inactivated Clostridium sporogenes and Its Conditioned Media on 3-Dimensional Colorectal Cancer Cell Models. Scientific Reports, 2015, 5, 15681.	3.3	19
27	Dual-Microstructured Porous, Anisotropic Film for Biomimicking of Endothelial Basement Membrane. ACS Applied Materials & Interfaces, 2015, 7, 13445-13456.	8.0	26
28	Direct Laser Microperforation of Bioresponsive Surface-Patterned Films with Through-Hole Arrays for Vascular Tissue-Engineering Application. ACS Biomaterials Science and Engineering, 2015, 1, 1239-1249.	5.2	20
29	A scalable approach to obtain mesenchymal stem cells with osteogenic potency on apatite microcarriers. Journal of Biomaterials Applications, 2014, 29, 93-103.	2.4	19
30	A polycaprolactone-tricalcium phosphate composite scaffold as an autograft-free spinal fusion cage in a sheep model. Biomaterials, 2014, 35, 5647-5659.	11.4	64
31	Bio-Conjugated Polycaprolactone Membranes: A Novel Wound Dressing. Archives of Plastic Surgery, 2014, 41, 638-646.	0.9	18