List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/519331/publications.pdf Version: 2024-02-01

REDNADDO COCKRUDN

#	Article	IF	CITATIONS
1	The pursuit of a dream, Francisco Javier Sayas and the HDG methods. SeMA Journal, 2022, 79, 37-56.	1.0	3
2	Discontinuous Galerkin methods through the lens of variational multiscale analysis. Computer Methods in Applied Mechanics and Engineering, 2022, 388, 114220.	3.4	8
3	An adjoint-based super-convergent Galerkin approximation of eigenvalues. Journal of Computational Physics, 2022, 449, 110816.	1.9	1
4	An adjoint-based adaptive error approximation of functionals by the hybridizable discontinuous Galerkin method for second-order elliptic equations. Journal of Computational Physics, 2022, 457, 111078.	1.9	3
5	Symplectic Hamiltonian finite element methods for linear elastodynamics. Computer Methods in Applied Mechanics and Engineering, 2021, 381, 113843.	3.4	9
6	Superconvergent Interpolatory HDG Methods for Reaction Diffusion Equations I: An HDG\$\$_{k}\$ Method. Journal of Scientific Computing, 2019, 81, 2188-2212.	1.1	6
7	Interpolatory HDG Method for Parabolic Semilinear PDEs. Journal of Scientific Computing, 2019, 79, 1777-1800.	1.1	20
8	An algorithm for stabilizing hybridizable discontinuous Galerkin methods for nonlinear elasticity. Results in Applied Mathematics, 2019, 1, 100001.	0.5	8
9	Stormer-Numerov HDG Methods for Acoustic Waves. Journal of Scientific Computing, 2018, 75, 597-624.	1.1	26
10	Supercloseness of Primal-Dual Galerkin Approximations for Second Order Elliptic Problems. Journal of Scientific Computing, 2018, 75, 376-394.	1.1	3
11	Discrete \$H^1\$-Inequalities for Spaces Admitting M-Decompositions. SIAM Journal on Numerical Analysis, 2018, 56, 3407-3429.	1.1	4
12	Superconvergence by <i>M</i> -decompositions. Part II: Construction of two-dimensional finite elements. ESAIM: Mathematical Modelling and Numerical Analysis, 2017, 51, 165-186.	0.8	28
13	Superconvergence by <i>M</i> -decompositions. Part III: Construction of three-dimensional finite elements. ESAIM: Mathematical Modelling and Numerical Analysis, 2017, 51, 365-398.	0.8	30
14	A Systematic Construction of Finite Element Commuting Exact Sequences. SIAM Journal on Numerical Analysis, 2017, 55, 1650-1688.	1.1	18
15	Symplectic Hamiltonian HDG methods for wave propagation phenomena. Journal of Computational Physics, 2017, 350, 951-973.	1.9	27
16	Adjoint-Based, Superconvergent Galerkin Approximations of Linear Functionals. Journal of Scientific Computing, 2017, 73, 644-666.	1.1	9
17	Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods. ESAIM: Mathematical Modelling and Numerical Analysis, 2016, 50, 635-650.	0.8	141
18	Superconvergence by \$M\$-decompositions. Part I: General theory for HDG methods for diffusion. Mathematics of Computation, 2016, 86, 1609-1641.	1.1	40

#	Article	IF	CITATIONS
19	Analysis of a hybridizable discontinuous Galerkin method for the steady-state incompressible Navier-Stokes equations. Mathematics of Computation, 2016, 86, 1643-1670.	1.1	68
20	A new discontinuous Galerkin method, conserving the discrete <i>H</i> ² -norm, for third-order linear equations in one space dimension. IMA Journal of Numerical Analysis, 2016, 36, 1570-1598.	1.5	9
21	Static Condensation, Hybridization, and the Devising of the HDG Methods. Lecture Notes in Computational Science and Engineering, 2016, , 129-177.	0.1	40
22	Hybridizable discontinuous Galerkin and mixed finite element methods for elliptic problems on surfaces. Mathematics of Computation, 2016, 85, 2609-2638.	1.1	11
23	Superconvergent HDG methods for linear, stationary, third-order equations in one-space dimension. Mathematics of Computation, 2016, 85, 2715-2742.	1.1	19
24	HDG Methods for Hyperbolic Problems. Handbook of Numerical Analysis, 2016, , 173-197.	0.9	7
25	Convergence and superconvergence analyses of HDG methods for time fractional diffusion problems. Advances in Computational Mathematics, 2016, 42, 377-393.	0.8	27
26	A Hybridizable Discontinuous Galerkin Method for the \$p\$-Laplacian. SIAM Journal of Scientific Computing, 2016, 38, A545-A566.	1.3	29
27	An explicit hybridizable discontinuous Galerkin method for the acoustic wave equation. Computer Methods in Applied Mechanics and Engineering, 2016, 300, 748-769.	3.4	44
28	The Staggered DG Method is the Limit of a Hybridizable DG Method. Part II: The Stokes Flow. Journal of Scientific Computing, 2016, 66, 870-887.	1.1	16
29	Analysis of an HDG method for linear elasticity. International Journal for Numerical Methods in Engineering, 2015, 102, 551-575.	1.5	35
30	A hybridizable discontinuous Galerkin method for fractional diffusion problems. Numerische Mathematik, 2015, 130, 293-314.	0.9	42
31	A phase-based hybridizable discontinuous Galerkin method for the numerical solution of the Helmholtz equation. Journal of Computational Physics, 2015, 290, 318-335.	1.9	30
32	Contraction property of adaptive hybridizable discontinuous Galerkin methods. Mathematics of Computation, 2015, 85, 1113-1141.	1.1	11
33	A class of embedded discontinuous Galerkin methods for computational fluid dynamics. Journal of Computational Physics, 2015, 302, 674-692.	1.9	36
34	A hybridizable discontinuous Galerkin formulation for non-linear elasticity. Computer Methods in Applied Mechanics and Engineering, 2015, 283, 303-329.	3.4	54
35	An a posteriori error estimate for the variable-degree Raviart-Thomas method. Mathematics of Computation, 2014, 83, 1063-1082.	1.1	13
36	Divergence-conforming HDG methods for Stokes flows. Mathematics of Computation, 2014, 83, 1571-1598.	1.1	63

#	Article	IF	CITATIONS
37	An adaptive spectral/DG method for a reduced phase-space based level set approach to geometrical optics on curved elements. Journal of Computational Physics, 2014, 259, 636-649.	1.9	0
38	The Staggered DG Method is the Limit of a Hybridizable DG Method. SIAM Journal on Numerical Analysis, 2014, 52, 915-932.	1.1	33
39	Solving Convection-Diffusion Problems on Curved Domains by Extensions from Subdomains. Journal of Scientific Computing, 2014, 59, 512-543.	1.1	27
40	Multigrid for an HDG method. IMA Journal of Numerical Analysis, 2014, 34, 1386-1425.	1.5	53
41	Devising methods for Stokes flow: An overview. Computers and Fluids, 2014, 98, 221-229.	1.3	36
42	Analysis of HDG Methods for Oseen Equations. Journal of Scientific Computing, 2013, 55, 392-431.	1.1	45
43	A priori error analysis for HDG methods using extensions from subdomains to achieve boundary conformity. Mathematics of Computation, 2013, 83, 665-699.	1.1	39
44	Analysis of variable-degree HDG methods for Convection-Diffusion equations. Part II: Semimatching nonconforming meshes. Mathematics of Computation, 2013, 83, 87-111.	1.1	29
45	A Posteriori Error Analysis for Hybridizable Discontinuous Galerkin Methods for Second Order Elliptic Problems. SIAM Journal on Numerical Analysis, 2013, 51, 676-693.	1.1	34
46	A space–time discontinuous Galerkin method for the incompressible Navier–Stokes equations. Journal of Computational Physics, 2013, 233, 339-358.	1.9	71
47	Uniform-in-time superconvergence of the HDG methods for the acoustic wave equation. Mathematics of Computation, 2013, 83, 65-85.	1.1	37
48	Superconvergent HDG methods for linear elasticity with weakly symmetric stresses. IMA Journal of Numerical Analysis, 2013, 33, 747-770.	1.5	55
49	Analysis of variable-degree HDG methods for convection-diffusion equations. Part I: general nonconforming meshes. IMA Journal of Numerical Analysis, 2012, 32, 1267-1293.	1.5	52
50	The devising of symmetric couplings of boundary element and discontinuous Galerkin methods. IMA Journal of Numerical Analysis, 2012, 32, 765-794.	1.5	12
51	Uniform-in-time superconvergence of HDG methods for the heat equation. Mathematics of Computation, 2012, 81, 107-129.	1.1	45
52	Conditions for superconvergence of HDG methods for second-order elliptic problems. Mathematics of Computation, 2012, 81, 1327-1353.	1.1	87
53	Coupling at a Distance HDG and BEM. SIAM Journal of Scientific Computing, 2012, 34, A28-A47.	1.3	14
54	Conditions for superconvergence of HDG methods for Stokes flow. Mathematics of Computation, 2012, 82, 651-671.	1.1	35

#	Article	IF	CITATIONS
55	Local a posteriori error estimates for time-dependent Hamilton-Jacobi equations. Mathematics of Computation, 2012, 82, 187-212.	1.1	3
56	A projection-based error analysis of HDG methods for Timoshenko beams. Mathematics of Computation, 2012, 81, 131-151.	1.1	16
57	An analysis of HDG methods for the vorticity-velocity-pressure formulation of the Stokes problem in three dimensions. Mathematics of Computation, 2012, 81, 1355-1368.	1.1	23
58	Superconvergent HDG Methods on Isoparametric Elements for Second-Order Elliptic Problems. SIAM Journal on Numerical Analysis, 2012, 50, 1417-1432.	1.1	26
59	Coupling of Raviart–Thomas and Hybridizable Discontinuous Galerkin Methods with BEM. SIAM Journal on Numerical Analysis, 2012, 50, 2778-2801.	1.1	12
60	Solving Dirichlet Boundary-value Problems on Curved Domains by Extensions from Subdomains. SIAM Journal of Scientific Computing, 2012, 34, A497-A519.	1.3	38
61	To CG or to HDG: A Comparative Study. Journal of Scientific Computing, 2012, 51, 183-212.	1.1	132
62	A Posteriori Error Estimates for HDG Methods. Journal of Scientific Computing, 2012, 51, 582-607.	1.1	39
63	Divergence-Free HDG Methods for the Vorticity-Velocity Formulation of the Stokes Problem. Journal of Scientific Computing, 2012, 52, 256-270.	1.1	13
64	A space–time hybridizable discontinuous Galerkin method for incompressible flows on deforming domains. Journal of Computational Physics, 2012, 231, 4185-4204.	1.9	72
65	Hybridizable discontinuous Galerkin methods for the time-harmonic Maxwell's equations. Journal of Computational Physics, 2011, 230, 7151-7175.	1.9	106
66	An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier–Stokes equations. Journal of Computational Physics, 2011, 230, 1147-1170.	1.9	197
67	High-order implicit hybridizable discontinuous Galerkin methods for acoustics and elastodynamics. Journal of Computational Physics, 2011, 230, 3695-3718.	1.9	123
68	Analysis of HDG methods for Stokes flow. Mathematics of Computation, 2011, 80, 723-723.	1.1	133
69	Boundary-Conforming Discontinuous Galerkin Methods via Extensions from Subdomains. Journal of Scientific Computing, 2010, 42, 144-184.	1.1	22
70	Hybridizable Discontinuous Galerkin Methods forÂTimoshenko Beams. Journal of Scientific Computing, 2010, 44, 1-37.	1.1	25
71	A Comparison of HDG Methods for Stokes Flow. Journal of Scientific Computing, 2010, 45, 215-237.	1.1	78
72	A projection-based error analysis of HDG methods. Mathematics of Computation, 2010, 79, 1351-1367.	1.1	202

#	Article	IF	CITATIONS
73	A new elasticity element made for enforcing weak stress symmetry. Mathematics of Computation, 2010, 79, 1331-1349.	1.1	96
74	Optimal Convergence of the Original DG Method on Special Meshes for Variable Transport Velocity. SIAM Journal on Numerical Analysis, 2010, 48, 133-146.	1.1	20
75	Hybridization and Postprocessing Techniques for Mixed Eigenfunctions. SIAM Journal on Numerical Analysis, 2010, 48, 857-881.	1.1	14
76	A hybridizable discontinuous Galerkin method for Stokes flow. Computer Methods in Applied Mechanics and Engineering, 2010, 199, 582-597.	3.4	164
77	Superconvergent discontinuous Galerkin methods for second-order elliptic problems. Mathematics of Computation, 2009, 78, 1-1.	1.1	141
78	A hybridizable discontinuous Galerkin method for linear elasticity. International Journal for Numerical Methods in Engineering, 2009, 80, 1058-1092.	1.5	93
79	An implicit high-order hybridizable discontinuous Galerkin method for linear convection–diffusion equations. Journal of Computational Physics, 2009, 228, 3232-3254.	1.9	251
80	An Equal-Order DG Method for the Incompressible Navier-Stokes Equations. Journal of Scientific Computing, 2009, 40, 188-210.	1.1	46
81	A Hybridizable and Superconvergent Discontinuous Galerkin Method forÂBiharmonic Problems. Journal of Scientific Computing, 2009, 40, 141-187.	1.1	56
82	Local derivative post-processing for the discontinuous Galerkin method. Journal of Computational Physics, 2009, 228, 8642-8664.	1.9	30
83	An implicit high-order hybridizable discontinuous Galerkin method for nonlinear convection–diffusion equations. Journal of Computational Physics, 2009, 228, 8841-8855.	1.9	184
84	Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems. SIAM Journal on Numerical Analysis, 2009, 47, 1319-1365.	1.1	830
85	An Analysis of the Embedded Discontinuous Galerkin Method for Second-Order Elliptic Problems. SIAM Journal on Numerical Analysis, 2009, 47, 2686-2707.	1.1	53
86	The Derivation of Hybridizable Discontinuous Galerkin Methods for Stokes Flow. SIAM Journal on Numerical Analysis, 2009, 47, 1092-1125.	1.1	102
87	A Hybridizable Discontinuous Galerkin Method for Steady-State Convection-Diffusion-Reaction Problems. SIAM Journal of Scientific Computing, 2009, 31, 3827-3846.	1.3	138
88	The Computation of a Locally Conservative Stress forÂtheÂContinuous Galerkin Method for Compressible Linearly Elastic Materials. Journal of Scientific Computing, 2008, 36, 151-163.	1.1	1
89	Optimal Convergence of the Original DG Method for the Transport-Reaction Equation on Special Meshes. SIAM Journal on Numerical Analysis, 2008, 46, 1250-1265.	1.1	75
90	Error Estimates for the Runge–Kutta Discontinuous Galerkin Method for the Transport Equation with Discontinuous Initial Data. SIAM Journal on Numerical Analysis, 2008, 46, 1364-1398.	1.1	27

#	Article	IF	CITATIONS
91	A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems. Mathematics of Computation, 2008, 77, 1887-1916.	1.1	206
92	Superconvergence of the numerical traces of discontinuous Galerkin and Hybridized methods for convection-diffusion problems in one space dimension. Mathematics of Computation, 2007, 76, 67-97.	1.1	92
93	Locally Conservative Fluxes for the Continuous Galerkin Method. SIAM Journal on Numerical Analysis, 2007, 45, 1742-1776.	1.1	56
94	The embedded discontinuous Galerkin method: application to linear shell problems. International Journal for Numerical Methods in Engineering, 2007, 70, 757-790.	1.5	52
95	An adaptive high-order discontinuous Galerkin method with error control for the Hamilton–Jacobi equations. Part I: The one-dimensional steady state case. Journal of Computational Physics, 2007, 226, 1027-1058.	1.9	5
96	A Note on Discontinuous Galerkin Divergence-free Solutions of the Navier–Stokes Equations. Journal of Scientific Computing, 2007, 31, 61-73.	1.1	194
97	Adjoint Recovery of Superconvergent Linear Functionals from Galerkin Approximations. The One-dimensional Case. Journal of Scientific Computing, 2007, 32, 201-232.	1.1	3
98	An Analysis of the Minimal Dissipation Local Discontinuous Galerkin Method for Convection–Diffusion Problems. Journal of Scientific Computing, 2007, 32, 233-262.	1.1	91
99	Lockingâ€Free Optimal Discontinuous Galerkin Methods for Timoshenko Beams. SIAM Journal on Numerical Analysis, 2006, 44, 2297-2325.	1.1	30
100	Stabilization mechanisms in discontinuous Galerkin finite element methods. Computer Methods in Applied Mechanics and Engineering, 2006, 195, 3293-3310.	3.4	117
101	Discontinuous Galerkin methods for incompressible elastic materials. Computer Methods in Applied Mechanics and Engineering, 2006, 195, 3184-3204.	3.4	49
102	Design and development of a discontinuous Galerkin method for shells. Computer Methods in Applied Mechanics and Engineering, 2006, 195, 3528-3548.	3.4	19
103	Element-by-Element Post-Processing of Discontinuous Galerkin Methods for Timoshenko Beams. Journal of Scientific Computing, 2006, 27, 177-187.	1.1	12
104	An accurate spectral/discontinuous finite-element formulation of a phase-space-based level set approach to geometrical optics. Journal of Computational Physics, 2005, 208, 175-195.	1.9	27
105	An adaptive method with rigorous error control for the Hamilton–Jacobi equations. Part II: The two-dimensional steady-state case. Journal of Computational Physics, 2005, 209, 391-405.	1.9	2
106	The local discontinuous Galerkin method for linearized incompressible fluid flow: a review. Computers and Fluids, 2005, 34, 491-506.	1.3	49
107	An adaptive method with rigorous error control for the Hamilton–Jacobi equations. Part I: The one-dimensional steady state case. Applied Numerical Mathematics, 2005, 52, 175-195.	1.2	10
108	An A Posteriori Error Estimate for the Local Discontinuous Galerkin Method Applied to Linear and Nonlinear Diffusion Problems. Journal of Scientific Computing, 2005, 22-23, 147-185.	1.1	52

#	Article	IF	CITATIONS
109	High-order RKDG Methods for Computational Electromagnetics. Journal of Scientific Computing, 2005, 22-23, 205-226.	1.1	73
110	A Mixed Finite Element Method for Elasticity in Three Dimensions. Journal of Scientific Computing, 2005, 25, 515-521.	1.1	77
111	Error analysis of variable degree mixed methods for elliptic problems via hybridization. Mathematics of Computation, 2005, 74, 1653-1678.	1.1	43
112	Hybridized globally divergence-free LDG methods. Part I: The Stokes problem. Mathematics of Computation, 2005, 75, 533-564.	1.1	73
113	Incompressible Finite Elements via Hybridization. Part I: The Stokes System in Two Space Dimensions. SIAM Journal on Numerical Analysis, 2005, 43, 1627-1650.	1.1	58
114	Incompressible Finite Elements via Hybridization. Part II: The Stokes System in Three Space Dimensions. SIAM Journal on Numerical Analysis, 2005, 43, 1651-1672.	1.1	42
115	Locally divergence-free discontinuous Galerkin methods for the Maxwell equations. Journal of Computational Physics, 2004, 194, 588-610.	1.9	230
116	A Characterization of Hybridized Mixed Methods for Second Order Elliptic Problems. SIAM Journal on Numerical Analysis, 2004, 42, 283-301.	1.1	124
117	Discontinuous Galerkin methods. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2003, 83, 731-754.	0.9	248
118	Continuous dependence and error estimation for viscosity methods. Acta Numerica, 2003, 12, 127-180.	6.3	22
119	Enhanced accuracy by post-processing for finite element methods for hyperbolic equations. Mathematics of Computation, 2002, 72, 577-607.	1.1	131
120	Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems. SIAM Journal on Numerical Analysis, 2002, 39, 1749-1779.	1.1	2,483
121	Local Discontinuous Galerkin Methods for the Stokes System. SIAM Journal on Numerical Analysis, 2002, 40, 319-343.	1.1	226
122	Title is missing!. Computational Geosciences, 2002, 6, 505-522.	1.2	35
123	Superconvergence of the Local Discontinuous Galerkin Method for Elliptic Problems on Cartesian Grids. SIAM Journal on Numerical Analysis, 2001, 39, 264-285.	1.1	243
124	A posteriori error estimates for general numerical methods for Hamilton-Jacobi equations. Part I: The steady state case. Mathematics of Computation, 2001, 71, 49-77.	1.1	17
125	Devising discontinuous Galerkin methods for non-linear hyperbolic conservation laws. Journal of Computational and Applied Mathematics, 2001, 128, 187-204.	1.1	73
126	Continuous Dependence on the Nonlinearity of Viscosity Solutions of Parabolic Equations. Journal of Differential Equations, 2001, 170, 180-187.	1.1	8

#	Article	IF	CITATIONS
127	Local discontinuous Galerkin methods for elliptic problems. Communications in Numerical Methods in Engineering, 2001, 18, 69-75.	1.3	11
128	Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems. Journal of Scientific Computing, 2001, 16, 173-261.	1.1	1,395
129	The local discontinuous Galerkin method for contaminant transport. Advances in Water Resources, 2000, 24, 73-87.	1.7	75
130	An A Priori Error Analysis of the Local Discontinuous Galerkin Method for Elliptic Problems. SIAM Journal on Numerical Analysis, 2000, 38, 1676-1706.	1.1	411
131	Continuous Dependence on the Nonlinearities of Solutions of Degenerate Parabolic Equations. Journal of Differential Equations, 1999, 151, 231-251.	1.1	90
132	The Runge–Kutta Discontinuous Galerkin Method for Conservation Laws V. Journal of Computational Physics, 1998, 141, 199-224.	1.9	1,787
133	A Priori Error Estimates for Numerical Methods for Scalar Conservation Laws Part III: Multidimensional Flux-Splitting Monotone Schemes on Non-Cartesian Grids. SIAM Journal on Numerical Analysis, 1998, 35, 1775-1803.	1.1	27
134	The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems. SIAM Journal on Numerical Analysis, 1998, 35, 2440-2463.	1.1	1,854
135	Estimating the number of asymptotic degrees of freedom for nonlinear dissipative systems. Mathematics of Computation, 1997, 66, 1073-1088.	1.1	80
136	A priori error estimates for numerical methods for scalar conservation laws. Part II : flux-splitting monotone schemes on irregular Cartesian grids. Mathematics of Computation, 1997, 66, 547-573.	1.1	27
137	A Model Numerical Scheme for the Propagation of phase Transitions in Solids. SIAM Journal of Scientific Computing, 1996, 17, 1092-1121.	1.3	33
138	A priori error estimates for numerical methods for scalar conservation laws. Part I: The general approach. Mathematics of Computation, 1996, 65, 533-574.	1.1	44
139	On Convergence to Entropy Solutions of a Single Conservation Law. Journal of Differential Equations, 1996, 128, 206-251.	1.1	20
140	Error Estimates for Finite Element Methods for Scalar Conservation Laws. SIAM Journal on Numerical Analysis, 1996, 33, 522-554.	1.1	87
141	Quantum Hydrodynamic Simulation of Hysteresis in the Resonant Tunneling Diode. Journal of Computational Physics, 1995, 117, 274-280.	1.9	84
142	Analysis of a finite element method for the drift-diffusion semiconductor device equations: the multidimensional case. Numerische Mathematik, 1995, 71, 1-28.	0.9	23
143	Mixed-RKDG Finite Element Methods for the 2-D Hydrodynamic Model for Semiconductor Device Simulation. VLSI Design, 1995, 3, 145-158.	0.5	50
144	Convergence of the Finite Volume Method for Multidimensional Conservation Laws. SIAM Journal on Numerical Analysis, 1995, 32, 687-705.	1.1	82

#	Article	IF	CITATIONS
145	Error Estimates for a Finite Element Method for the Drift Diffusion Semiconductor Device Equations. SIAM Journal on Numerical Analysis, 1994, 31, 1062-1089.	1.1	8
146	Nonlinearly Stable Compact Schemes for Shock Calculations. SIAM Journal on Numerical Analysis, 1994, 31, 607-627.	1.1	104
147	An error estimate for finite volume methods for multidimensional conservation laws. Mathematics of Computation, 1994, 63, 77-103.	1.1	61
148	Convergence of a finite element method for the drift-diffusion semiconductor device equations: the zero diffusion case. Mathematics of Computation, 1992, 59, 383-401.	1.1	12
149	On the continuity in ??(Ω) of the ?²-projection into finite element spaces. Mathematics of Computation, 1991, 57, 551-561.	1.1	3
150	Quasimonotone Schemes for Scalar Conservation Laws. Part III. SIAM Journal on Numerical Analysis, 1990, 27, 259-276.	1.1	3
151	The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case. Mathematics of Computation, 1990, 54, 545-581.	1.1	163
152	The Runge-Kutta Local Projection Discontinuous Galerkin Finite Element Method for Conservation Laws. IV: The Multidimensional Case. Mathematics of Computation, 1990, 54, 545.	1.1	914
153	Quasimonotone Schemes for Scalar Conservation Laws. Part II. SIAM Journal on Numerical Analysis, 1990, 27, 247-258.	1.1	12
154	TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Mathematics of Computation, 1989, 52, 411-435.	1.1	232
155	Numerical solution of Maxwell's equations in a conductive and polarizable medium. Computer Methods in Applied Mechanics and Engineering, 1989, 75, 11-25.	3.4	5
156	TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: One-dimensional systems. Journal of Computational Physics, 1989, 84, 90-113.	1.9	1,152
157	Quasimonotone Schemes for Scalar Conservation Laws Part I. SIAM Journal on Numerical Analysis, 1989, 26, 1325-1341.	1.1	21
158	TVB Runge-Kutta Local Projection Discontinuous Galerkin Finite Element Method for Conservation Laws II: General Framework. Mathematics of Computation, 1989, 52, 411.	1.1	1,364
159	A note on the devising of superconvergent HDG methods for Stokes flow by <i>M</i> -decompositions. IMA Journal of Numerical Analysis, 0, , drw029.	1.5	2
160	Superconvergent Interpolatory HDG Methods for Reaction Diffusion Equations II: HHO-Inspired Methods. Communications on Applied Mathematics and Computation, 0, , 1.	0.7	0