Stefan Grimme

List of Publications by Citations

Source: https://exaly.com/author-pdf/5193276/stefan-grimme-publications-by-citations.pdf

Version: 2024-04-26

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

89 92,457 303 342 h-index g-index citations papers 109,789 7.2 9.27 375 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
342	A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. <i>Journal of Chemical Physics</i> , 2010 , 132, 154104	3.9	23773
341	Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 2006 , 27, 1787-99	3.5	19063
340	Effect of the damping function in dispersion corrected density functional theory. <i>Journal of Computational Chemistry</i> , 2011 , 32, 1456-65	3.5	10429
339	Accurate description of van der Waals complexes by density functional theory including empirical corrections. <i>Journal of Computational Chemistry</i> , 2004 , 25, 1463-73	3.5	3746
338	Semiempirical hybrid density functional with perturbative second-order correlation. <i>Journal of Chemical Physics</i> , 2006 , 124, 034108	3.9	2321
337	Density functional theory with London dispersion corrections. <i>Wiley Interdisciplinary Reviews:</i> Computational Molecular Science, 2011 , 1, 211-228	7.9	1645
336	Improved second-order MllerPlesset perturbation theory by separate scaling of parallel- and antiparallel-spin pair correlation energies. <i>Journal of Chemical Physics</i> , 2003 , 118, 9095-9102	3.9	1471
335	A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 6670-88	3.6	1347
334	Supramolecular binding thermodynamics by dispersion-corrected density functional theory. <i>Chemistry - A European Journal</i> , 2012 , 18, 9955-64	4.8	974
333	Double-hybrid density functionals with long-range dispersion corrections: higher accuracy and extended applicability. <i>Physical Chemistry Chemical Physics</i> , 2007 , 9, 3397-406	3.6	890
332	Efficient and Accurate Double-Hybrid-Meta-GGA Density Functionals-Evaluation with the Extended GMTKN30 Database for General Main Group Thermochemistry, Kinetics, and Noncovalent Interactions. <i>Journal of Chemical Theory and Computation</i> , 2011 , 7, 291-309	6.4	841
331	Do special noncovalent pi-pi stacking interactions really exist?. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 3430-4	16.4	808
330	A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 32184-32215	3.6	738
329	Dispersion-Corrected Mean-Field Electronic Structure Methods. <i>Chemical Reviews</i> , 2016 , 116, 5105-54	68.1	738
328	GFN2-xTB-An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions. <i>Journal of Chemical Theory and Computation</i> , 2019 , 15, 1652-1671	6.4	717
327	Density functional theory with dispersion corrections for supramolecular structures, aggregates, and complexes of (bio)organic molecules. <i>Organic and Biomolecular Chemistry</i> , 2007 , 5, 741-58	3.9	636
326	A Robust and Accurate Tight-Binding Quantum Chemical Method for Structures, Vibrational Frequencies, and Noncovalent Interactions of Large Molecular Systems Parametrized for All spd-Block Elements (Z = 1-86). <i>Journal of Chemical Theory and Computation</i> , 2017 , 13, 1989-2009	6.4	592

(2014-2009)

325	Reversible metal-free carbon dioxide binding by frustrated Lewis pairs. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 6643-6	16.4	586
324	A combination of KohnBham density functional theory and multi-reference configuration interaction methods. <i>Journal of Chemical Physics</i> , 1999 , 111, 5645-5655	3.9	564
323	Rapid intramolecular heterolytic dihydrogen activation by a four-membered heterocyclic phosphane-borane adduct. <i>Chemical Communications</i> , 2007 , 5072-4	5.8	516
322	Towards chemical accuracy for the thermodynamics of large molecules: new hybrid density functionals including non-local correlation effects. <i>Physical Chemistry Chemical Physics</i> , 2006 , 8, 4398-40	o∳.6	476
321	Consistent structures and interactions by density functional theory with small atomic orbital basis sets. <i>Journal of Chemical Physics</i> , 2015 , 143, 054107	3.9	404
320	A geometrical correction for the inter- and intra-molecular basis set superposition error in Hartree-Fock and density functional theory calculations for large systems. <i>Journal of Chemical Physics</i> , 2012 , 136, 154101	3.9	368
319	The mechanism of dihydrogen activation by frustrated Lewis pairs revisited. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 1402-5	16.4	350
318	A General Database for Main Group Thermochemistry, Kinetics, and Noncovalent Interactions - Assessment of Common and Reparameterized (meta-)GGA Density Functionals. <i>Journal of Chemical Theory and Computation</i> , 2010 , 6, 107-26	6.4	340
317	Double-hybrid density functional theory for excited electronic states of molecules. <i>Journal of Chemical Physics</i> , 2007 , 127, 154116	3.9	339
316	Report on the sixth blind test of organic crystal structure prediction methods. <i>Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials</i> , 2016 , 72, 439-59	1.8	338
315	Seemingly simple stereoelectronic effects in alkane isomers and the implications for Kohn-Sham density functional theory. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 4460-4	16.4	332
314	Automated exploration of the low-energy chemical space with fast quantum chemical methods. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 7169-7192	3.6	327
313	Benchmarking of London Dispersion-Accounting Density Functional Theory Methods on Very Large Molecular Complexes. <i>Journal of Chemical Theory and Computation</i> , 2013 , 9, 1580-91	6.4	315
312	Theoretical thermodynamics for large molecules: walking the thin line between accuracy and computational cost. <i>Accounts of Chemical Research</i> , 2008 , 41, 569-79	24.3	313
311	A generally applicable atomic-charge dependent London dispersion correction. <i>Journal of Chemical Physics</i> , 2019 , 150, 154122	3.9	300
310	Why the standard B3LYP/6-31G* model chemistry should not be used in DFT calculations of molecular thermochemistry: understanding and correcting the problem. <i>Journal of Organic Chemistry</i> , 2012 , 77, 10824-34	4.2	298
309	Extension of the D3 dispersion coefficient model. <i>Journal of Chemical Physics</i> , 2017 , 147, 034112	3.9	293
308	DFT-D3 Study of Some Molecular Crystals. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 7615-7621	3.8	282

307	Corrected small basis set Hartree-Fock method for large systems. <i>Journal of Computational Chemistry</i> , 2013 , 34, 1672-85	3.5	276
306	Benchmarking density functional methods against the S66 and S66x8 datasets for non-covalent interactions. <i>ChemPhysChem</i> , 2011 , 12, 3421-33	3.2	252
305	Exploration of Chemical Compound, Conformer, and Reaction Space with Meta-Dynamics Simulations Based on Tight-Binding Quantum Chemical Calculations. <i>Journal of Chemical Theory and Computation</i> , 2019 , 15, 2847-2862	6.4	240
304	Double-hybrid density functionals. <i>Wiley Interdisciplinary Reviews: Computational Molecular Science</i> , 2014 , 4, 576-600	7.9	227
303	B97-3c: A revised low-cost variant of the B97-D density functional method. <i>Journal of Chemical Physics</i> , 2018 , 148, 064104	3.9	221
302	Accurate calculation of the heats of formation for large main group compounds with spin-component scaled MP2 methods. <i>Journal of Physical Chemistry A</i> , 2005 , 109, 3067-77	2.8	211
301	How to compute isomerization energies of organic molecules with quantum chemical methods. <i>Journal of Organic Chemistry</i> , 2007 , 72, 2118-26	4.2	210
300	Reactions of an intramolecular frustrated Lewis pair with unsaturated substrates: evidence for a concerted olefin addition reaction. <i>Journal of the American Chemical Society</i> , 2009 , 131, 12280-9	16.4	205
299	Metal-free catalytic olefin hydrogenation: low-temperature H2 activation by frustrated Lewis pairs. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 10164-8	16.4	200
298	Steric crowding can stabilize a labile molecule: solving the hexaphenylethane riddle. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 12639-42	16.4	197
297	Full Selectivity Control in Cobalt(III)-Catalyzed C-H Alkylations by Switching of the C-H Activation Mechanism. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 10378-10382	16.4	194
296	"Mindless" DFT Benchmarking. Journal of Chemical Theory and Computation, 2009, 5, 993-1003	6.4	191
295	Effects of London dispersion correction in density functional theory on the structures of organic molecules in the gas phase. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 16031-42	3.6	188
294	System-dependent dispersion coefficients for the DFT-D3 treatment of adsorption processes on ionic surfaces. <i>ChemPhysChem</i> , 2011 , 12, 3414-20	3.2	188
293	Performance of dispersion-corrected density functional theory for the interactions in ionic liquids. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 4875-83	3.6	181
292	A simplified Tamm-Dancoff density functional approach for the electronic excitation spectra of very large molecules. <i>Journal of Chemical Physics</i> , 2013 , 138, 244104	3.9	176
291	Performance of the van der Waals Density Functional VV10 and (hybrid)GGA Variants for Thermochemistry and Noncovalent Interactions. <i>Journal of Chemical Theory and Computation</i> , 2011 , 7, 3866-71	6.4	175
290	An improved method for density functional calculations of the frequency-dependent optical rotation. <i>Chemical Physics Letters</i> , 2002 , 361, 321-328	2.5	175

289	Spin-component-scaled electron correlation methods. <i>Wiley Interdisciplinary Reviews: Computational Molecular Science</i> , 2012 , 2, 886-906	7.9	173
288	Assessment of Orbital-Optimized, Spin-Component Scaled Second-Order Many-Body Perturbation Theory for Thermochemistry and Kinetics. <i>Journal of Chemical Theory and Computation</i> , 2009 , 5, 3060-73	3 ^{6.4}	172
287	Capture of NO by a Frustrated Lewis Pair: a new type of persistent N-oxyl radical. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 7567-71	16.4	161
286	Combinations of ethers and B(C6F5)3 function as hydrogenation catalysts. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 7492-5	16.4	160
285	Reaction of frustrated Lewis pairs with conjugated ynones-selective hydrogenation of the carbon-carbon triple bond. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 7183-6	16.4	160
284	Is spin-component scaled second-order Mller-Plesset perturbation theory an appropriate method for the study of noncovalent interactions in molecules?. <i>Journal of Physical Chemistry A</i> , 2007 , 111, 4862	2 -8 8	159
283	On the importance of electron correlation effects for the pi-pi interactions in cyclophanes. <i>Chemistry - A European Journal</i> , 2004 , 10, 3423-9	4.8	156
282	Calculation of frequency dependent optical rotation using density functional response theory. <i>Chemical Physics Letters</i> , 2001 , 339, 380-388	2.5	150
281	Extended tight-binding quantum chemistry methods. <i>Wiley Interdisciplinary Reviews: Computational Molecular Science</i> , 2021 , 11, e1493	7.9	149
2 80	N,N-addition of frustrated Lewis pairs to nitric oxide: an easy entry to a unique family of aminoxyl radicals. <i>Journal of the American Chemical Society</i> , 2012 , 134, 10156-68	16.4	147
279	Comprehensive Benchmark of Association (Free) Energies of Realistic Host-Guest Complexes. Journal of Chemical Theory and Computation, 2015 , 11, 3785-801	6.4	146
278	On the importance of the dispersion energy for the thermodynamic stability of molecules. <i>ChemPhysChem</i> , 2011 , 12, 1258-61	3.2	146
277	CE/CH Functionalization by Manganese(I) Catalysis: Expedient (Per)Fluoro-Allylations and Alkenylations. <i>ACS Catalysis</i> , 2017 , 7, 4209-4213	13.1	140
276	A simplified time-dependent density functional theory approach for electronic ultraviolet and circular dichroism spectra of very large molecules. <i>Computational and Theoretical Chemistry</i> , 2014 , 1040-1041, 45-53	2	138
275	CO2 and formate complexes of phosphine/borane frustrated Lewis pairs. <i>Chemistry - A European Journal</i> , 2011 , 17, 9640-50	4.8	135
274	Reactions of phosphorus/boron frustrated Lewis pairs with SO2. Chemical Science, 2013, 4, 213-219	9.4	132
273	Facile carbon monoxide reduction at intramolecular frustrated phosphane/borane Lewis pair templates. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 2243-6	16.4	132
272	A General Quantum Mechanically Derived Force Field (QMDFF) for Molecules and Condensed Phase Simulations. <i>Journal of Chemical Theory and Computation</i> , 2014 , 10, 4497-514	6.4	130

271	A practicable real-space measure and visualization of static electron-correlation effects. Angewandte Chemie - International Edition, 2015 , 54, 12308-13	16.4	127
270	Accurate Modeling of Organic Molecular Crystals by Dispersion-Corrected Density Functional Tight Binding (DFTB). <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 1785-9	6.4	123
269	Comprehensive Thermochemical Benchmark Set of Realistic Closed-Shell Metal Organic Reactions. Journal of Chemical Theory and Computation, 2018 , 14, 2596-2608	6.4	122
268	Mechanism of titanocene-mediated epoxide opening through homolytic substitution. <i>Journal of the American Chemical Society</i> , 2007 , 129, 1359-71	16.4	121
267	Benchmark study of the performance of density functional theory for bond activations with (ni,pd)-based transition-metal catalysts. <i>ChemistryOpen</i> , 2013 , 2, 115-24	2.3	118
266	Formation of cyclic allenes and cumulenes by cooperative addition of frustrated Lewis pairs to conjugated enynes and diynes. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 2414-7	16.4	118
265	Towards first principles calculation of electron impact mass spectra of molecules. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 6306-12	16.4	115
264	Cation-cation "attraction": when London dispersion attraction wins over Coulomb repulsion. <i>Inorganic Chemistry</i> , 2011 , 50, 2619-28	5.1	112
263	Improved third-order Mller-Plesset perturbation theory. <i>Journal of Computational Chemistry</i> , 2003 , 24, 1529-37	3.5	111
262	Effects of London dispersion on the isomerization reactions of large organic molecules: a density functional benchmark study. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 6940-8	3.6	110
261	Neue Einblicke in den Mechanismus der Diwasserstoff-Aktivierung durch frustrierte Lewis-Paare. <i>Angewandte Chemie</i> , 2010 , 122, 1444-1447	3.6	110
260	Using dispersion-corrected density functional theory to understand supramolecular binding thermodynamics. <i>Chemical Communications</i> , 2015 , 51, 1764-74	5.8	109
259	Fully Automated Quantum-Chemistry-Based Computation of Spin-Spin-Coupled Nuclear Magnetic Resonance Spectra. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 14763-14769	16.4	107
258	Exploring the limits of frustrated Lewis pair chemistry with alkynes: detection of a system that favors 1,1-carboboration over cooperative 1,2-P/B-addition. <i>Chemistry - an Asian Journal</i> , 2010 , 5, 2199-	2 0 8	101
257	Geometrical correction for the inter- and intramolecular basis set superposition error in periodic density functional theory calculations. <i>Journal of Physical Chemistry A</i> , 2013 , 117, 9282-92	2.8	100
256	Importance of London dispersion effects for the packing of molecular crystals: a case study for intramolecular stacking in a bis-thiophene derivative. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 850	0 ³ 4 ⁶	100
255	Robust Atomistic Modeling of Materials, Organometallic, and Biochemical Systems. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 15665-15673	16.4	93
254	A radical tandem reaction with homolytic cleavage of a Ti-O bond. <i>Angewandte Chemie - International Edition</i> , 2003 , 42, 3687-90	16.4	92

253	Consistent theoretical description of 1,3-dipolar cycloaddition reactions. <i>Journal of Physical Chemistry A</i> , 2006 , 110, 2583-6	2.8	89	
252	Calculation of the Electronic Spectra of Large Molecules. Reviews in Computational Chemistry, 2004,	153-218	87	
251	Ultra-fast computation of electronic spectra for large systems by tight-binding based simplified Tamm-Dancoff approximation (sTDA-xTB). <i>Journal of Chemical Physics</i> , 2016 , 145, 054103	3.9	87	
250	Enantiomerically pure [M(6)L(12)] or [M(12)L(24)] polyhedra from flexible bis(pyridine) ligands. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 1693-8	16.4	86	
249	London Dispersion Enables the Shortest Intermolecular Hydrocarbon H Contact. <i>Journal of the American Chemical Society</i> , 2017 , 139, 7428-7431	16.4	85	
248	Mild Cobalt(III)-Catalyzed Allylative C-F/C-H Functionalizations at Room Temperature. <i>Chemistry - A European Journal</i> , 2017 , 23, 12145-12148	4.8	85	
247	Metal-free Catalytic Olefin Hydrogenation: Low-Temperature H2 Activation by Frustrated Lewis Pairs. <i>Angewandte Chemie</i> , 2012 , 124, 10311-10315	3.6	85	
246	Performance of Non-Local and Atom-Pairwise Dispersion Corrections to DFT for Structural Parameters of Molecules with Noncovalent Interactions. <i>Journal of Chemical Theory and Computation</i> , 2013 , 9, 308-15	6.4	85	
245	Electronic effects of triarylphosphines in metal-free hydrogen activation: a kinetic and computational study. <i>Chemical Science</i> , 2013 , 4, 2788	9.4	85	
244	Computational Chemistry: The Fate of Current Methods and Future Challenges. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 4170-4176	16.4	85	
243	Carbonylation reactions of intramolecular vicinal frustrated phosphane/borane Lewis pairs. <i>Journal of the American Chemical Society</i> , 2013 , 135, 18567-74	16.4	83	
242	Full Selectivity Control in Cobalt(III)-Catalyzed CH Alkylations by Switching of the CH Activation Mechanism. <i>Angewandte Chemie</i> , 2017 , 129, 10514-10518	3.6	81	
241	Elucidation of the mechanism of titanocene-mediated epoxide opening by a combined experimental and theoretical approach. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 2041-4	16.4	80	
240	Remarkable coordination behavior of alkyl isocyanides toward unsaturated vicinal frustrated P/B Lewis pairs. <i>Chemical Science</i> , 2013 , 4, 2657	9.4	75	
239	Quantum chemical benchmark study on 46 RNA backbone families using a dinucleotide unit. Journal of Chemical Theory and Computation, 2015, 11, 4972-91	6.4	74	
238	New insights into frustrated Lewis pairs: structural investigations of intramolecular phosphane-borane adducts by using modern solid-state NMR techniques and DFT calculations. <i>Journal of the American Chemical Society</i> , 2012 , 134, 4236-49	16.4	74	
237	Protein-ligand interaction energies with dispersion corrected density functional theory and high-level wave function based methods. <i>Journal of Physical Chemistry A</i> , 2011 , 115, 11210-20	2.8	73	
236	Comprehensive Study of the Thermochemistry of First-Row Transition Metal Compounds by Spin Component Scaled MP2 and MP3 Methods. <i>Organometallics</i> , 2004 , 23, 5581-5592	3.8	72	

235	Benchmarking DFT and semiempirical methods on structures and lattice energies for ten ice polymorphs. <i>Journal of Chemical Physics</i> , 2015 , 142, 124104	3.9	71
234	The thermochemistry of london dispersion-driven transition metal reactions: getting the 'right answer for the right reason'. <i>ChemistryOpen</i> , 2014 , 3, 177-89	2.3	7°
233	1,1-Hydroboration and a Borane Adduct of Diphenyldiazomethane: A Potential Prelude to FLP-N Chemistry. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 16588-16592	16.4	70
232	How to Compute Electron Ionization Mass Spectra from First Principles. <i>Journal of Physical Chemistry A</i> , 2016 , 120, 3755-66	2.8	69
231	Understanding and Quantifying London Dispersion Effects in Organometallic Complexes. <i>Accounts of Chemical Research</i> , 2019 , 52, 258-266	24.3	69
230	Substituent effects and supramolecular interactions of titanocene(III) chloride: implications for catalysis in single electron steps. <i>Journal of the American Chemical Society</i> , 2014 , 136, 1663-71	16.4	68
229	Structural importance of secondary interactions in molecules: origin of unconventional conformations of phosphine-borane adducts. <i>Chemistry - A European Journal</i> , 2008 , 14, 333-43	4.8	68
228	Low-Cost Quantum Chemical Methods for Noncovalent Interactions. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 4275-84	6.4	66
227	The Fractional Occupation Number Weighted Density as a Versatile Analysis Tool for Molecules with a Complicated Electronic Structure. <i>Chemistry - A European Journal</i> , 2017 , 23, 6150-6164	4.8	65
226	Functional Mechanically Interlocked Molecules: Asymmetric Organocatalysis with a Catenated Bifunctional Brfisted Acid. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 11456-11459	16.4	65
225	Reaction of a bridged frustrated Lewis pair with nitric oxide: a kinetics study. <i>Journal of the American Chemical Society</i> , 2014 , 136, 513-9	16.4	65
224	Reaktionen frustrierter Lewis-Paare mit konjugierten Inonen Belektive Hydrierung der Kohlenstoff-Kohlenstoff-Dreifachbindung. <i>Angewandte Chemie</i> , 2011 , 123, 7321-7324	3.6	65
223	Ab initio calculations for the optical rotations of conformationally flexible molecules: a case study on six-, seven-, and eight-membered fluorinated cycloalkanol esters. <i>Chirality</i> , 2002 , 14, 793-7	2.1	65
222	rSCAN-3c: A "Swiss army knife" composite electronic-structure method. <i>Journal of Chemical Physics</i> , 2021 , 154, 064103	3.9	65
221	Blind prediction of binding affinities for charged supramolecular host-guest systems: achievements and shortcomings of DFT-D3. <i>Journal of Physical Chemistry B</i> , 2014 , 118, 3431-40	3.4	64
220	Hydrosilylation of ketones, imines and nitriles catalysed by electrophilic phosphonium cations: functional group selectivity and mechanistic considerations. <i>Chemistry - A European Journal</i> , 2015 , 21, 6491-500	4.8	63
219	Dispersion corrected hartree-fock and density functional theory for organic crystal structure prediction. <i>Topics in Current Chemistry</i> , 2014 , 345, 1-23		61
218	B(C6F5)3 -catalyzed transfer of dihydrogen from one unsaturated hydrocarbon to another. Angewandte Chemie - International Edition, 2015, 54, 12158-62	16.4	60

217	An Octanuclear Metallosupramolecular Cage Designed To Exhibit Spin-Crossover Behavior. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 4930-4935	16.4	59
216	Quantum chemical calculation of electron ionization mass spectra for general organic and inorganic molecules. <i>Chemical Science</i> , 2017 , 8, 4879-4895	9.4	58
215	Excited states using the simplified Tamm-Dancoff-Approach for range-separated hybrid density functionals: development and application. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 14408-19	3.6	58
214	Frustrated Lewis Pair-Catalyzed Cycloisomerization of 1,5-Enynes via a 5-endo-dig Cyclization/Protodeborylation Sequence. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 4336-9	16.4	58
213	Frustrated Lewis pair modification by 1,1-carboboration: disclosure of a phosphine oxide triggered nitrogen monoxide addition to an intramolecular P/B frustrated Lewis pair. <i>Journal of the American Chemical Society</i> , 2014 , 136, 9014-27	16.4	57
212	Facile Carbon Monoxide Reduction at Intramolecular Frustrated Phosphane/Borane Lewis Pair Templates. <i>Angewandte Chemie</i> , 2013 , 125, 2299-2302	3.6	57
211	Enantiomerically pure trinuclear helicates via diastereoselective self-assembly and characterization of their redox chemistry. <i>Journal of the American Chemical Society</i> , 2014 , 136, 11830-8	16.4	55
210	Mechanistic study of the titanocene(III)-catalyzed radical arylation of epoxides. <i>Chemistry - A European Journal</i> , 2015 , 21, 280-9	4.8	54
209	A Radical Roundabout for an Unprecedented Tandem Reaction Including a Homolytic Substitution with a Titanium-Oxygen Bond. <i>European Journal of Organic Chemistry</i> , 2004 , 2004, 2337-2351	3.2	54
208	Cyclische Allene und Cumulene durch kooperative Addition frustrierter Lewis-Paare an konjugierte Enine und Diine. <i>Angewandte Chemie</i> , 2010 , 122, 2464-2467	3.6	53
207	A computationally efficient double hybrid density functional based on the random phase approximation. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 20926-37	3.6	51
206	Stable Borocyclic Radicals via Frustrated Lewis Pair Hydrogenations. <i>Journal of the American Chemical Society</i> , 2016 , 138, 2500-3	16.4	50
205	Titanocene-Catalyzed Radical Opening of N-Acylated Aziridines. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 12654-12657	16.4	45
204	Thermochemical benchmarking of hydrocarbon bond separation reaction energies: Jacob's ladder is not reversed!. <i>Molecular Physics</i> , 2010 , 108, 2655-2666	1.7	45
203	Organic crystal polymorphism: a benchmark for dispersion-corrected mean-field electronic structure methods. <i>Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials</i> , 2016 , 72, 502-13	1.8	45
202	Intramolecular London Dispersion Interaction Effects on Gas-Phase and Solid-State Structures of Diamondoid Dimers. <i>Journal of the American Chemical Society</i> , 2017 , 139, 16696-16707	16.4	44
201	Frustrated Lewis Pair Catalyzed Hydrogenation of Amides: Halides as Active Lewis Base in the Metal-Free Hydrogen Activation. <i>Journal of the American Chemical Society</i> , 2019 , 141, 159-162	16.4	44
200	Comprehensive theoretical study of all 1812 C isomers. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 14296-14305	3.6	43

199	The frustrated Lewis pair pathway to methylene phosphonium systems. Chemical Science, 2014, 5, 797-	8934	43
198	Extension and evaluation of the D4 London-dispersion model for periodic systems. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 8499-8512	3.6	42
197	Implementation of nuclear gradients of range-separated hybrid density functionals and benchmarking on rotational constants for organic molecules. <i>Journal of Computational Chemistry</i> , 2014 , 35, 1509-16	3.5	41
196	Comment on: "On the accuracy of DFT methods in reproducing ligand substitution energies for transition metal complexes in solution: the role of dispersive interactions" by H. Jacobsen and L. Cavallo. ChemPhysChem, 2012, 13, 1407-9; author reply 1405-6	3.2	40
195	Small Atomic Orbital Basis Set First-Principles Quantum Chemical Methods for Large Molecular and Periodic Systems: A Critical Analysis of Error Sources. <i>ChemistryOpen</i> , 2016 , 5, 94-109	2.3	40
194	CO-Reduction Chemistry: Reaction of a CO-Derived Formylhydridoborate with Carbon Monoxide, with Carbon Dioxide, and with Dihydrogen. <i>Journal of the American Chemical Society</i> , 2017 , 139, 6474-6	483 ^{.4}	39
193	Exploration of the Solid-State Sorption Properties of Shape-Persistent Macrocyclic Nanocarbons as Bulk Materials and Small Aggregates. <i>Journal of the American Chemical Society</i> , 2020 , 142, 8763-8775	16.4	39
192	Structure Optimisation of Large Transition-Metal Complexes with Extended Tight-Binding Methods. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 11078-11087	16.4	38
191	Highly Active Titanocene Catalysts for Epoxide Hydrosilylation: Synthesis, Theory, Kinetics, EPR Spectroscopy. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 7671-5	16.4	38
190	Selective Oxidation of an Active Intramolecular Amine/Borane Frustrated Lewis Pair with Dioxygen. <i>Journal of the American Chemical Society</i> , 2016 , 138, 4302-5	16.4	38
189	The "catalytic nitrosyl effect": NO bending boosting the efficiency of rhenium based alkene hydrogenations. <i>Journal of the American Chemical Society</i> , 2013 , 135, 4088-102	16.4	38
188	HYDROPHOBE Challenge: A Joint Experimental and Computational Study on the Host-Guest Binding of Hydrocarbons to Cucurbiturils, Allowing Explicit Evaluation of Guest Hydration Free-Energy Contributions. <i>Journal of Physical Chemistry B</i> , 2017 , 121, 11144-11162	3.4	38
187	Unusual mass spectrometric dissociation pathway of protonated isoquinoline-3-carboxamides due to multiple reversible water adduct formation in the gas phase. <i>Journal of the American Society for Mass Spectrometry</i> , 2009 , 20, 2034-48	3.5	38
186	Eine radikalische Tandemreaktion mit homolytischer Substitution an einer Titan-Sauerstoff-Bindung. <i>Angewandte Chemie</i> , 2003 , 115, 3815-3818	3.6	37
185	Screened exchange hybrid density functional for accurate and efficient structures and interaction energies. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 15519-23	3.6	37
184	A general intermolecular force field based on tight-binding quantum chemical calculations. <i>Journal of Chemical Physics</i> , 2017 , 147, 161708	3.9	36
183	Towards full Quantum-Mechanics-based Protein-Ligand Binding Affinities. <i>ChemPhysChem</i> , 2017 , 18, 898-905	3.2	35
182	Bismuth as a versatile cation for luminescence in coordination polymers from BiX/4,4'-bipy: understanding of photophysics by quantum chemical calculations and structural parallels to lanthanides. <i>Dalton Transactions</i> , 2018 , 47, 7669-7681	4.3	35

181	Why Does the Intramolecular Trimethylene-Bridged Frustrated Lewis Pair Mes2 PCH2 CH2 CH2 B(C6 F5)2 Not Activate Dihydrogen?. <i>Chemistry - A European Journal</i> , 2016 , 22, 5988-95	4.8	35	
180	Borane-Catalyzed Synthesis of Quinolines Bearing Tetrasubstituted Stereocenters by Hydride Abstraction-Induced Electrocyclization. <i>Chemistry - A European Journal</i> , 2018 , 24, 16287-16291	4.8	35	
179	The furan microsolvation blind challenge for quantum chemical methods: First steps. <i>Journal of Chemical Physics</i> , 2018 , 148, 014301	3.9	34	
178	Semiautomated Transition State Localization for Organometallic Complexes with Semiempirical Quantum Chemical Methods. <i>Journal of Chemical Theory and Computation</i> , 2020 , 16, 2002-2012	6.4	32	
177	Efficient Quantum Chemical Calculation of Structure Ensembles and Free Energies for Nonrigid Molecules. <i>Journal of Physical Chemistry A</i> , 2021 , 125, 4039-4054	2.8	32	
176	Fast and Reasonable Geometry Optimization of Lanthanoid Complexes with an Extended Tight Binding Quantum Chemical Method. <i>Inorganic Chemistry</i> , 2017 , 56, 12485-12491	5.1	31	
175	High accuracy quantum-chemistry-based calculation and blind prediction of macroscopic pKa values in the context of the SAMPL6 challenge. <i>Journal of Computer-Aided Molecular Design</i> , 2018 , 32, 1139-11	49 ²	31	
174	Elucidation of electron ionization induced fragmentations of adenine by semiempirical and density functional molecular dynamics. <i>Journal of Physical Chemistry A</i> , 2014 , 118, 11479-84	2.8	31	
173	1,1-Hydroboration and a Borane Adduct of Diphenyldiazomethane: A Potential Prelude to FLP-N2 Chemistry. <i>Angewandte Chemie</i> , 2017 , 129, 16815-16819	3.6	31	
172	Robust and Efficient Implicit Solvation Model for Fast Semiempirical Methods. <i>Journal of Chemical Theory and Computation</i> , 2021 , 17, 4250-4261	6.4	31	
171	Automated and efficient quantum chemical determination and energetic ranking of molecular protonation sites. <i>Journal of Computational Chemistry</i> , 2017 , 38, 2618-2631	3.5	30	
170	The Chiral Trimer and a Metastable Chiral Dimer of Achiral Hexafluoroisopropanol: A Multi-Messenger Study. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 5080-5084	16.4	30	
169	A Robust Non-Self-Consistent Tight-Binding Quantum Chemistry Method for large Molecules		29	
168	Raising the Bar in Aromatic Donor-Acceptor Interactions with Cyclic Trinuclear Gold(I) Complexes as Strong EDonors. <i>Journal of the American Chemical Society</i> , 2018 , 140, 17932-17944	16.4	29	
167	BNB-Doped Phenalenyls: Modular Synthesis, Optoelectronic Properties, and One-Electron Reduction. <i>Journal of the American Chemical Society</i> , 2020 , 142, 11072-11083	16.4	28	
166	Nonlinear-response properties in a simplified time-dependent density functional theory (sTD-DFT) framework: Evaluation of the first hyperpolarizability. <i>Journal of Chemical Physics</i> , 2018 , 149, 024108	3.9	28	
165	Electrophilic Formylation of Arenes by Silylium Ion Mediated Activation of Carbon Monoxide. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 8301-8305	16.4	28	
164	First principles calculation of electron ionization mass spectra for selected organic drug molecules. Organic and Biomolecular Chemistry, 2014 , 12, 8737-44	3.9	28	

163	Synthesis, chiral resolution, and absolute configuration of dissymmetric 4,15-difunctionalized [2.2]paracyclophanes. <i>Journal of Organic Chemistry</i> , 2014 , 79, 6679-87	4.2	28
162	Frustrated Lewis pair addition to conjugated diynes: formation of zwitterionic 1,2,3-butatriene derivatives. <i>Dalton Transactions</i> , 2012 , 41, 9135-42	4.3	28
161	A combined experimental and theoretical study on the conformation of multiarmed chiral aryl ethers. <i>Journal of Organic Chemistry</i> , 2007 , 72, 6998-7010	4.2	28
160	Heterobifunctional Rotaxanes for Asymmetric Catalysis. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 5102-5107	16.4	28
159	Synthesis and Dynamics of Nanosized Phenylene-Ethynylene-Butadiynylene Rotaxanes and the Role of Shape Persistence. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 3328-33	16.4	28
158	Co-C Bond Dissociation Energies in Cobalamin Derivatives and Dispersion Effects: Anomaly or Just Challenging?. <i>Journal of Chemical Theory and Computation</i> , 2015 , 11, 1037-45	6.4	27
157	Efficient Computation of Free Energy Contributions for Association Reactions of Large Molecules. Journal of Physical Chemistry Letters, 2020 , 11, 6606-6611	6.4	27
156	Elucidation of the Mechanism of Titanocene-Mediated Epoxide Opening by a Combined Experimental and Theoretical Approach. <i>Angewandte Chemie</i> , 2006 , 118, 2095-2098	3.6	26
155	Vollautomatisierte quantenchemische Berechnung von Spin-Spin- gekoppelten magnetischen Kernspinresonanzspektren. <i>Angewandte Chemie</i> , 2017 , 129, 14958-14964	3.6	25
154	Quantum chemistry of FLPs and their activation of small molecules: methodological aspects. <i>Topics in Current Chemistry</i> , 2013 , 332, 213-30		25
153	Formation of macrocyclic ring systems by carbonylation of trifunctional P/B/B frustrated Lewis pairs. <i>Chemical Science</i> , 2018 , 9, 1544-1550	9.4	25
152	Solid state frustrated Lewis pair chemistry. <i>Chemical Science</i> , 2018 , 9, 4859-4865	9.4	24
151	Electronic Circular Dichroism of [16]Helicene With Simplified TD-DFT: Beyond the Single Structure Approach. <i>Chirality</i> , 2016 , 28, 365-9	2.1	24
150	Biomolecular Structure Information from High-Speed Quantum Mechanical Electronic Spectra Calculation. <i>Journal of the American Chemical Society</i> , 2017 , 139, 11682-11685	16.4	24
149	Halogen bonded supramolecular capsules: a challenging test case for quantum chemical methods. <i>Chemical Communications</i> , 2016 , 52, 9893-6	5.8	24
148	Theoretical study on conformational energies of transition metal complexes. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 287-299	3.6	24
147	Finding the best density functional approximation to describe interaction energies and structures of ionic liquids in molecular dynamics studies. <i>Journal of Chemical Physics</i> , 2018 , 148, 193835	3.9	23
146	Coupling of Carbon Monoxide with Nitrogen Monoxide at a Frustrated Lewis Pair Template. Angewandte Chemie - International Edition, 2016 , 55, 9216-9	16.4	23

(2018-2015)

145	Direct synthesis of a geminal zwitterionic phosphonium/hydridoborate systemdeveloping an alternative tool for generating frustrated Lewis pair hydrogen activation systems. <i>Organic and Biomolecular Chemistry</i> , 2015 , 13, 5783-92	3.9	22	
144	Double FLP-Alkyne Exchange Reactions: A Facile Route to Te/B Heterocycles. <i>Journal of the American Chemical Society</i> , 2015 , 137, 13264-7	16.4	22	
143	Automated quantum chemistry based molecular dynamics simulations of electron ionization induced fragmentations of the nucleobases Uracil, Thymine, Cytosine, and Guanine. <i>European Journal of Mass Spectrometry</i> , 2015 , 21, 125-40	1.1	22	
142	Lithium Dicyclohexylamide in Transition-Metal-Free Fischer-Tropsch Chemistry. <i>Journal of the American Chemical Society</i> , 2021 , 143, 634-638	16.4	22	
141	Hochaktive Titanocen-Katalysatoren fl Epoxid-Hydrosilylierungen	3.6	21	
140	Reversible formylborane/SO coupling at a frustrated Lewis pair framework. <i>Chemical Communications</i> , 2017 , 53, 633-635	5.8	20	
139	Robust Atomistic Modeling of Materials, Organometallic, and Biochemical Systems. <i>Angewandte Chemie</i> , 2020 , 132, 15795-15803	3.6	20	
138	What is the role of acid-acid interactions in asymmetric phosphoric acid organocatalysis? A detailed mechanistic study using interlocked and non-interlocked catalysts. <i>Chemical Science</i> , 2020 , 11, 4381-439	98·4	20	
137	Calorimetric and quantum chemical studies of some photodimers of anthracenes. <i>Physical Chemistry Chemical Physics</i> , 1999 , 1, 2457-2462	3.6	20	
136	A Frustrated Phosphane-Borane Lewis Pair and Hydrogen: A Kinetics Study. <i>Chemistry - A European Journal</i> , 2016 , 22, 11958-61	4.8	20	
135	Aggregation Behavior of a Six-Membered Cyclic Frustrated Phosphane/Borane Lewis Pair: Formation of a Supramolecular Cyclooctameric Macrocyclic Ring System. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 882-886	16.4	20	
134	Single-Point Hessian Calculations for Improved Vibrational Frequencies and Rigid-Rotor-Harmonic-Oscillator Thermodynamics. <i>Journal of Chemical Theory and Computation</i> , 2021 , 17, 1701-1714	6.4	20	
133	Electrophilic Phosphonium Cation-Mediated Phosphane Oxide Reduction Using Oxalyl Chloride and Hydrogen. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 15253-15256	16.4	20	
132	Assessing Density Functional Theory for Chemically Relevant Open-Shell Transition Metal Reactions. <i>Journal of Chemical Theory and Computation</i> , 2021 , 17, 6134-6151	6.4	19	
131	S 2 Reactions at Tertiary Carbon Centers in Epoxides. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 9719-9722	16.4	18	
130	Trapping Experiments on a Trichlorosilanide Anion: a Key Intermediate of Halogenosilane Chemistry. <i>Inorganic Chemistry</i> , 2017 , 56, 8683-8688	5.1	18	
129	Folding of unstructured peptoids and formation of hetero-bimetallic peptoid complexes upon side-chain-to-metal coordination. <i>Chemical Science</i> , 2019 , 10, 620-632	9.4	18	
128	Counterintuitive Interligand Angles in the Diaryls E{C6H3-2,6-(C6H2-2,4,6-iPr3)2}2 (E = Ge, Sn, or Pb) and Related Species: The Role of London Dispersion Forces. <i>Organometallics</i> , 2018 , 37, 2075-2085	3.8	18	

127	Catalytic Difunctionalization of Unactivated Alkenes with Unreactive Hexamethyldisilane through Regeneration of Silylium Ions. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 17307-17311	16.4	18
126	Titanocene-Catalyzed Radical Opening of N-Acylated Aziridines. <i>Angewandte Chemie</i> , 2017 , 129, 12828-	·1;2 :8 31	18
125	Calculation of Electron Ionization Mass Spectra with Semiempirical GFNn-xTB Methods. <i>ACS Omega</i> , 2019 , 4, 15120-15133	3.9	17
124	Far-IR and UV spectral signatures of controlled complexation and microhydration of the polycyclic aromatic hydrocarbon acenaphthene. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 3414-3422	3.6	17
123	Quantum Chemical Calculation of Molecular and Periodic Peptide and Protein Structures. <i>Journal of Physical Chemistry B</i> , 2020 , 124, 3636-3646	3.4	17
122	Calculation of absolute molecular entropies and heat capacities made simple. <i>Chemical Science</i> , 2021 , 12, 6551-6568	9.4	17
121	TEMPO-Mediated Catalysis of the Sterically Hindered Hydrogen Atom Transfer Reaction between (CPh)Cr(CO)H and a Trityl Radical. <i>Journal of the American Chemical Society</i> , 2019 , 141, 1882-1886	16.4	16
120	Diastereoselective Self-Assembly of a Neutral Dinuclear Double-Stranded Zinc(II) Helicate via Narcissistic Self-Sorting. <i>Chemistry - A European Journal</i> , 2017 , 23, 12380-12386	4.8	16
119	Modeling of spin-spin distance distributions for nitroxide labeled biomacromolecules. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 24282-24290	3.6	16
118	Exploring the chemical nature of super-heavy main-group elements by means of efficient plane-wave density-functional theory. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 18048-18058	3.6	15
117	Nonlinear-response properties in a simplified time-dependent density functional theory (sTD-DFT) framework: Evaluation of excited-state absorption spectra. <i>Journal of Chemical Physics</i> , 2019 , 150, 0941	1 29	15
116	The Chiral Trimer and a Metastable Chiral Dimer of Achiral Hexafluoroisopropanol: A Multi-Messenger Study. <i>Angewandte Chemie</i> , 2019 , 131, 5134-5138	3.6	15
115	Electronic circular dichroism of highly conjugated Bystems: breakdown of the Tamm-Dancoff/configuration interaction singles approximation. <i>Journal of Physical Chemistry A</i> , 2015 , 119, 3653-62	2.8	15
114	Donor-acceptor interactions between cyclic trinuclear pyridinate gold(i)-complexes and electron-poor guests: nature and energetics of guest-binding and templating on graphite. <i>Chemical Science</i> , 2018 , 9, 3477-3483	9.4	15
113	Accurate Thermochemistry for Large Molecules with Modern Density Functionals. <i>Topics in Current Chemistry</i> , 2014 , 1-23		15
112	Ein praktikables rumliches Malffl Effekte statischer Elektronenkorrelation und deren Visualisierung. <i>Angewandte Chemie</i> , 2015 , 127, 12483-12488	3.6	15
111	SET Oxidation of Li/X Phosphinidenoid Complexes by TEMPO. <i>Organometallics</i> , 2012 , 31, 3457-3459	3.8	15
110	Benchmark Study of Electrochemical Redox Potentials Calculated with Semiempirical and DFT Methods. <i>Journal of Physical Chemistry A</i> , 2020 , 124, 7166-7176	2.8	15

(2021-2020)

109	The first microsolvation step for furans: New experiments and benchmarking strategies. <i>Journal of Chemical Physics</i> , 2020 , 152, 164303	3.9	14	
108	Pulsed EPR Dipolar Spectroscopy on Spin Pairs with one Highly Anisotropic Spin Center: The Low-Spin Fe Case. <i>Chemistry - A European Journal</i> , 2019 , 25, 14388-14398	4.8	14	
107	Structure Optimisation of Large Transition-Metal Complexes with Extended Tight-Binding Methods. <i>Angewandte Chemie</i> , 2019 , 131, 11195-11204	3.6	13	
106	Fast Quantum Chemical Simulations of Infrared Spectra of Organic Compounds with the B97-3c Composite Method. <i>Journal of Physical Chemistry A</i> , 2019 , 123, 3802-3808	2.8	13	
105	Synthesis of 1,3-Amino Alcohols by Hydroxy-Directed Aziridination and Aziridine Hydrosilylation. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 13528-13532	16.4	13	
104	Efficient Calculation of Small Molecule Binding in Metal®rganic Frameworks and Porous Organic Cages. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 27529-27541	3.8	13	
103	Ox-SLIM: Synthesis of and Site-Specific Labelling with a Highly Hydrophilic Trityl Spin Label. <i>Chemistry - A European Journal</i> , 2021 , 27, 5292-5297	4.8	13	
102	Exhaustively Trichlorosilylated C and C Building Blocks: Beyond the Mller-Rochow Direct Process. Journal of the American Chemical Society, 2018 , 140, 9696-9708	16.4	12	
101	Isolation and Computational Studies of a Series of Terphenyl Substituted Diplumbynes with Ligand Dependent Lead-Lead Multiple-Bonding Character. <i>Journal of the American Chemical Society</i> , 2019 , 141, 14370-14383	16.4	12	
100	The inhibition of iridium-promoted water oxidation catalysis (WOC) by cucurbit[n]urils. <i>Dalton Transactions</i> , 2012 , 41, 12233-43	4.3	12	
99	Theoretical study of the stacking behavior of selected polycondensed aromatic hydrocarbons with various symmetries. <i>Journal of Physical Chemistry A</i> , 2013 , 117, 616-25	2.8	12	
98	Comprehensive Assessment of GFN Tight-Binding and Composite Density Functional Theory Methods for Calculating Gas-Phase Infrared Spectra. <i>Journal of Chemical Theory and Computation</i> , 2020 , 16, 7044-7060	6.4	12	
97	Cyclic Amine/Borane Lewis Pairs by the Reaction of N,N-Diallylaniline with Lancaster's H2 B-C6 F5 Reagent. <i>Chemistry - an Asian Journal</i> , 2016 , 11, 1394-9	4.5	12	
96	Elektrophile Formylierung von Aromaten durch silyliumionvermittelte Aktivierung von Kohlenmonoxid. <i>Angewandte Chemie</i> , 2018 , 130, 8433-8437	3.6	11	
95	Boron Lewis Acid-Catalyzed Regioselective Hydrothiolation of Conjugated Dienes with Thiols. <i>ACS Catalysis</i> , 2019 , 9, 11627-11633	13.1	11	
94	Synthesis and Rearrangement of P-Nitroxyl-Substituted P(III) and P(V) Phosphanes: A Combined Experimental and Theoretical Case Study. <i>Chemistry - A European Journal</i> , 2016 , 22, 10102-10	4.8	11	
93	Reduction of Phosphine Oxide by Using Chlorination Reagents and Dihydrogen: DFT Mechanistic Insights. <i>Chemistry - A European Journal</i> , 2019 , 25, 4670-4672	4.8	11	
92	Quantification of Noncovalent Interactions in Azide-Pnictogen, -Chalcogen, and -Halogen Contacts. <i>Chemistry - A European Journal</i> , 2021 , 27, 4627-4639	4.8	11	

91	Fast and Accurate Quantum Chemical Modeling of Infrared Spectra of Condensed-Phase Systems. Journal of Physical Chemistry B, 2020 , 124, 6664-6670	3.4	10
90	Selective phosphanyl complex trapping using TEMPO. Synthesis and reactivity of P-functional P-nitroxyl phosphane complexes. <i>Chemical Communications</i> , 2014 , 50, 12508-11	5.8	10
89	Simplified time-dependent density functional theory (sTD-DFT) for molecular optical rotation. <i>Journal of Chemical Physics</i> , 2020 , 153, 084116	3.9	10
88	Synthesis and Comprehensive Structural and Chiroptical Characterization of Enones Derived from (-)-Esantonin by Experiment and Theory. <i>Journal of Organic Chemistry</i> , 2016 , 81, 4588-600	4.2	10
87	Synthesis of <code>GOxo-Bridged Iron(III)</code> Tetraphenylporphyrin-Spacer-Nitroxide Dimers and their Structural and Dynamics Characterization by using EPR and MD Simulations. <i>Chemistry - A European Journal</i> , 2019 , 25, 2586-2596	4.8	9
86	A Simplified Spin-Flip Time-Dependent Density Functional Theory Approach for the Electronic Excitation Spectra of Very Large Diradicals. <i>Journal of Physical Chemistry A</i> , 2019 , 123, 5815-5825	2.8	9
85	Unimolecular decomposition pathways of negatively charged nitriles by ab initio molecular dynamics. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 31017-31026	3.6	9
84	Influencing the Self-Sorting Behavior of [2.2]Paracyclophane-Based Ligands by Introducing Isostructural Binding Motifs. <i>Chemistry - A European Journal</i> , 2020 , 26, 3335-3347	4.8	9
83	Heterobifunctional Rotaxanes for Asymmetric Catalysis. <i>Angewandte Chemie</i> , 2020 , 132, 5140-5145	3.6	9
82	Chiral Dibenzopentalene-Based Conjugated Nanohoops through Stereoselective Synthesis. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 10680-10689	16.4	9
81	Strong Evidence of a Phosphanoxyl Complex: Formation, Bonding, and Reactivity of Ligated Phosphorus Analogues of Nitroxides. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 14439-14443	16.4	9
80	Comprehensive Benchmark Study on the Calculation of Si NMR Chemical Shifts. <i>Inorganic Chemistry</i> , 2021 , 60, 272-285	5.1	9
79	Computerchemie: das Schicksal aktueller Methoden und zukliftige Herausforderungen. Angewandte Chemie, 2018 , 130, 4241-4248	3.6	9
78	Pulsed EPR Dipolar Spectroscopy under the Breakdown of the High-Field Approximation: The High-Spin Iron(III) Case. <i>Chemistry - A European Journal</i> , 2019 , 25, 8820-8828	4.8	8
77	Dynamic Structural Effects on the Second-Harmonic Generation of Tryptophane-Rich Peptides and Gramicidin A. <i>Journal of Physical Chemistry B</i> , 2020 , 124, 2568-2578	3.4	8
76	On the hydrogen activation by frustrated Lewis pairs in the solid state: benchmark studies and theoretical insights. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2017 , 375,	3	8
75	Synthesis, Chiral Resolution, and Absolute Configuration of Functionalized Trgers Base Derivatives: Part III. <i>Synthesis</i> , 2015 , 47, 3118-3132	2.9	8
74	HFIP-Assisted Single C-F Bond Activation of Trifluoromethyl Ketones using Visible-Light Photoredox Catalysis. <i>Angewandte Chemie - International Edition</i> , 2021 ,	16.4	8

73	Efficient structural and energetic screening of fullerene encapsulation in a large supramolecular double decker macrocycle. <i>Journal of the Serbian Chemical Society</i> , 2019 , 84, 837-844	0.9	8
72	Oxidation Under Reductive Conditions: From Benzylic Ethers to Acetals with Perfect Atom-Economy by Titanocene(III) Catalysis. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 5482-54	188 ⁴	8
71	trans-cis C-Pd-C rearrangement in hemichelates. <i>Dalton Transactions</i> , 2017 , 46, 8125-8137	4.3	7
70	SN2 Reactions at Tertiary Carbon Centers in Epoxides. <i>Angewandte Chemie</i> , 2017 , 129, 9851-9854	3.6	7
69	Indirect synthesis of a pair of formal methane activation products at a phosphane/borane frustrated Lewis pair. <i>Dalton Transactions</i> , 2016 , 45, 19230-19233	4.3	7
68	Thermodynamics of H+/HIHIelTransfer from [CpV(CO)3H][IComparisons to the Isoelectronic CpCr(CO)3H. <i>Organometallics</i> , 2019 , 38, 4319-4328	3.8	7
67	Zu E irst-PrinciplesEBerechnungen von ElektronenstoEnduzierten Massenspektren von Molek E en. <i>Angewandte Chemie</i> , 2013 , 125, 6426-6433	3.6	7
66	From QCEIMS to QCxMS: A Tool to Routinely Calculate CID Mass Spectra Using Molecular Dynamics. <i>Journal of the American Society for Mass Spectrometry</i> , 2021 , 32, 1735-1751	3.5	7
65	Benchmarking London dispersion corrected density functional theory for noncovalent ion- interactions. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 11635-11648	3.6	7
64	PCM-ROKS for the Description of Charge-Transfer States in Solution: Singlet-Triplet Gaps with Chemical Accuracy from Open-Shell Kohn-Sham Reaction-Field Calculations. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 8470-8480	6.4	7
63	Cooperative Organocatalysis: A Systematic Investigation of Covalently Linked Organophosphoric Acids for the Stereoselective Transfer Hydrogenation of Quinolines. <i>European Journal of Organic Chemistry</i> , 2019 , 2019, 5190-5195	3.2	6
62	Revisiting conformations of methyl lactate in water and methanol. <i>Journal of Chemical Physics</i> , 2021 , 155, 024507	3.9	6
61	Frustrated Lewis Pair Catalyzed Reduction of Carbon Dioxide Using Hydroboranes: New DFT Mechanistic Insights. <i>ChemCatChem</i> , 2020 , 12, 3656-3660	5.2	6
60	Katalytische Difunktionalisierung von nichtaktivierten Alkenen mit reaktionstr Beramethyldisilan durch Neubildung von Silyliumionen. <i>Angewandte Chemie</i> , 2019 , 131, 17468-17472	3.6	5
59	Borane-Catalyzed Hydrogenation of Tertiary Amides Activated by Oxalyl Chloride: DFT Mechanistic Insights. <i>European Journal of Organic Chemistry</i> , 2019 , 2019, 4609-4612	3.2	5
58	Acylation Reactions of Dibenzo-7-phosphanorbornadiene: DFT Mechanistic Insights. <i>ChemistryOpen</i> , 2019 , 8, 807-810	2.3	5
57	Are Fully Conjugated Expanded Indenofluorenes Analogues and Diindeno[]thiophene Derivatives Diradicals? A Simplified (Spin-Flip) Time-Dependent Density Functional Theory [(SF-)sTD-DFT] Study. <i>Journal of Physical Chemistry A</i> , 2019 , 123, 9828-9839	2.8	5
56	Chemistry of Thermally Generated Transient Phosphanoxyl Complexes. <i>Organometallics</i> , 2017 , 36, 2877	3.8 83	5

55	A Unified Strategy for the Chemically Intuitive Interpretation of Molecular Optical Response Properties. <i>Journal of Chemical Theory and Computation</i> , 2020 , 16, 7709-7720	6.4	5
54	Perspective on Simplified Quantum Chemistry Methods for Excited States and Response Properties. <i>Journal of Physical Chemistry A</i> , 2021 , 125, 3841-3851	2.8	5
53	Efficient Quantum-Chemical Calculations of Acid Dissociation Constants from Free-Energy Relationships. <i>Journal of Physical Chemistry A</i> , 2021 , 125, 5681-5692	2.8	5
52	Oxidation Under Reductive Conditions: From Benzylic Ethers to Acetals with Perfect Atom-Economy by Titanocene(III) Catalysis. <i>Angewandte Chemie</i> , 2021 , 133, 5542-5548	3.6	5
51	Hydrogenation of Secondary Amides using Phosphane Oxide and Frustrated Lewis Pair Catalysis. <i>Chemistry - A European Journal</i> , 2021 , 27, 14179-14183	4.8	5
50	Starker Hinweis auf einen Phosphanoxylkomplex: Bildung, Bindung und Reaktivit komplexgebundener P-Analoga von Nitroxiden. <i>Angewandte Chemie</i> , 2016 , 128, 14654-14658	3.6	4
49	Computer-aided simulation of infrared spectra of ethanol conformations in gas, liquid and in CCl solution. <i>Journal of Computational Chemistry</i> , 2021 ,	3.5	4
48	Titanocene-Catalyzed [2+2] Cycloaddition of Bisenones and Comparison with Photoredox Catalysis and Established Methods. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 14339-14344	16.4	4
47	Predicting the Mass Spectra of Environmental Pollutants Using Computational Chemistry: A Case Study and Critical Evaluation. <i>Journal of the American Society for Mass Spectrometry</i> , 2021 , 32, 1508-151	8 ^{3.5}	4
46	Comment on "The Nature of Chalcogen-Bonding-Type Tellurium-Nitrogen Interactions": Fixing the Description of Finite-Temperature Effects Restores the Agreement Between Experiment and Theory. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 13144-13149	16.4	4
45	Facile Synthesis of Cyanide and Isocyanides from CO. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 16965-16969	16.4	4
44	[Cl@SiH]: Parent Siladodecahedrane with Endohedral Chloride Ion. <i>Journal of the American Chemical Society</i> , 2021 , 143, 10865-10871	16.4	4
43	Non-covalent Stabilization in Transition Metal Coordination and Organometallic Complexes 2016 , 115-7	143	4
42	Reduktion von Phosphanoxiden mit Oxalylchlorid und Wasserstoff, vermittelt durch ein elektrophiles Phosphoniumkation. <i>Angewandte Chemie</i> , 2018 , 130, 15473-15476	3.6	4
41	Reactions of a Dilithiomethane with CO and N O: An Avenue to an Anionic Ketene and a Hexafunctionalized Benzene. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 25281-25285	16.4	4
40	Dispersion corrected rSCAN based global hybrid functionals: rSCANh, rSCAN0, and rSCAN50 <i>Journal of Chemical Physics</i> , 2022 , 156, 134105	3.9	4
39	Building up Strain in One Step: Synthesis of an Edge-Fused Double Silacyclobutene from an Extensively Trichlorosilylated Butadiene Dianion. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 16181-16187	16.4	3
38	Synthesis of 1,3-Amino Alcohols by Hydroxy-Directed Aziridination and Aziridine Hydrosilylation. Angewandte Chemie, 2018 , 130, 13716-13720	3.6	3

(2021-2019)

37	Extension of the element parameter set for ultra-fast excitation spectra calculation (sTDA-xTB). <i>Molecular Physics</i> , 2019 , 117, 1104-1116	1.7	3
36	Automated Quantum Chemistry-Based Calculation of Optical Rotation for Large Flexible Molecules. <i>Journal of Organic Chemistry</i> , 2021 , 86, 15522-15531	4.2	3
35	Boron-Catalyzed Hydroarylation of 1,3-Dienes with Arylamines. <i>Organic Letters</i> , 2021 , 23, 8952-8957	6.2	3
34	Nanopatterns of molecular spoked wheels as giant homologues of benzene tricarboxylic acids. <i>Chemical Science</i> , 2021 , 12, 9352-9358	9.4	3
33	Acid-Catalyzed Rearrangements of 3-Aryloxirane-2-Carboxamides: Novel DFT Mechanistic Insights. <i>ChemistryOpen</i> , 2020 , 9, 743-747	2.3	2
32	Stoichiometric and catalytic isomerization of alkenylboranes using bulky Lewis bases. <i>Chemical Communications</i> , 2017 , 53, 9458-9461	5.8	2
31	Nanoscale Econjugated ladders. <i>Nature Communications</i> , 2021 , 12, 6614	17.4	2
30	A Generally Applicable Atomic-Charge Dependent London Dispersion Correction Scheme		2
29	Selective Catalytic Frustrated Lewis Pair Hydrogenation of CO in the Presence of Silylhalides. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 25771-25775	16.4	2
28	Comment on The Nature of Chalcogen-Bonding-Type Tellurium Litrogen Interactions I Fixing the Description of Finite-Temperature Effects Restores the Agreement Between Experiment and Theory. <i>Angewandte Chemie</i> , 2021 , 133, 13252-13257	3.6	2
27	LiAlH4-catalyzed Imine Hydrogenation with Dihydrogen: New DFT Mechanistic Insights. <i>ChemCatChem</i> , 2021 , 13, 3401-3404	5.2	2
26	Facile Synthesis of Cyanide and Isocyanides from CO. <i>Angewandte Chemie</i> , 2021 , 133, 17102-17106	3.6	2
25	Mechanistic Insights for Dimethyl Sulfoxide Catalyzed Aromatic Chlorination Reactions. <i>ChemCatChem</i> , 2021 , 13, 207-211	5.2	2
24	Mechanistic Insights for Nitromethane Activation into Reactive Nitrogenating Reagents. <i>ChemCatChem</i> , 2021 , 13, 2132-2137	5.2	2
23	Mechanistic Insights for Acid-catalyzed Rearrangement of Quinoxalin-2-one with Diamine and Enamine. <i>ChemCatChem</i> , 2021 , 13, 1503-1508	5.2	2
22	All-Atom Quantum Mechanical Calculation of the Second-Harmonic Generation of Fluorescent Proteins. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 9684-9690	6.4	2
21	Synthesis and Mechanistic Insights of the Formation of 3-Hydroxyquinolin-2-ones including Viridicatin from 2-Chloro-,3-diaryloxirane-2-carboxamides under Acid-Catalyzed Rearrangements. <i>Journal of Organic Chemistry</i> , 2021 , 86, 13514-13534	4.2	2
20	Quantum Chemical Calculation and Evaluation of Partition Coefficients for Classical and Emerging Environmentally Relevant Organic Compounds <i>Environmental Science & Environmental Science & Environ</i>	10.3	2

19	Designing a Solution-Stable Distannene: The Decisive Role of London Dispersion Effects in the Structure and Properties of {Sn(CH-2,4,6-Cy)} (Cy = Cyclohexyl) <i>Journal of the American Chemical Society</i> , 2021 , 143, 21478-21483	16.4	2
18	Structural and Conformational Studies on Carboxamides of 5,6-Diaminouracils-Precursors of Biologically Active Xanthine Derivatives. <i>Molecules</i> , 2019 , 24,	4.8	1
17	Building up Strain in One Step: Synthesis of an Edge-Fused Double Silacyclobutene from an Extensively Trichlorosilylated Butadiene Dianion. <i>Angewandte Chemie</i> , 2020 , 132, 16315-16321	3.6	1
16	Hydrogen atom transfer rates from Tp-containing metal-hydrides to trityl radicals. <i>Canadian Journal of Chemistry</i> , 2021 , 99, 216-220	0.9	1
15	Selective Catalytic Frustrated Lewis Pair Hydrogenation of CO2 in the Presence of Silylhalides. <i>Angewandte Chemie</i> , 2021 , 133, 25975	3.6	1
14	Mechanistic Insights for Aniline-Catalyzed Halogenation Reactions. <i>ChemCatChem</i> , 2020 , 12, 5369-5373	5.2	1
13	Mechanistic Insights for Iodane Mediated Aromatic Halogenation Reactions. <i>ChemCatChem</i> , 2020 , 12, 6186-6190	5.2	1
12	Chiral Dibenzopentalene-Based Conjugated Nanohoops through Stereoselective Synthesis. <i>Angewandte Chemie</i> , 2021 , 133, 10775-10784	3.6	1
11	Titanocene-Catalyzed [2+2] Cycloaddition of Bisenones and Comparison with Photoredox Catalysis and Established Methods. <i>Angewandte Chemie</i> , 2021 , 133, 14460-14465	3.6	1
10	Sensory Perception of Non-Deuterated and Deuterated Organic Compounds. <i>Chemistry - A European Journal</i> , 2021 , 27, 1046-1056	4.8	1
9	Calculation of improved enthalpy and entropy of vaporization by a modified partition function in quantum cluster equilibrium theory. <i>Journal of Chemical Physics</i> , 2021 , 155, 104101	3.9	1
8	Steric Influence on Reactions of Benzyl Potassium Species with CO. <i>Chemistry - an Asian Journal</i> , 2021 , 16, 3640-3644	4.5	1
7	The long-awaited synthesis and self-assembly of a small rigid -symmetric trilactam <i>Chemical Communications</i> , 2022 ,	5.8	1
6	Benchmark Study on the Calculation of Sn NMR Chemical Shifts <i>Inorganic Chemistry</i> , 2022 , 61, 3903-39	1 3 .1	1
5	Ligand Protonation at Carbon, not Nitrogen, during H Production with Amine-Rich Iron Electrocatalysts. <i>Inorganic Chemistry</i> , 2021 , 60, 17407-17413	5.1	О
4	Frustrated Lewis-Pair Neighbors at the Xanthene Framework: Epimerization at Phosphorus and Cooperative Formation of Macrocyclic Adduct Structures. <i>Chemistry - A European Journal</i> , 2021 , 27, 121	04 ^{:8} 12	114
3	The power of trichlorosilylation: isolable trisilylated allyl anions, allyl radicals, and allenyl anions. <i>Chemical Science</i> , 2021 , 12, 12419-12428	9.4	0
2	Aggregation Behavior of a Six-Membered Cyclic Frustrated Phosphane/Borane Lewis Pair: Formation of a Supramolecular Cyclooctameric Macrocyclic Ring System. <i>Angewandte Chemie</i> , 2018 , 131, 892	3.6	

High-Throughput Non-targeted Chemical Structure Identification Using Gas-Phase Infrared Spectra.

Analytical Chemistry, 2021, 93, 10688-10696

7.8