Tim Albrecht

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/519320/publications.pdf Version: 2024-02-01

TIM AIRDECHT

#	Article	IF	CITATIONS
1	Analytical nanoscience. Analyst, The, 2022, 147, 765-766.	1.7	2
2	Multi-component self-assembled molecular-electronic films: towards new high-performance thermoelectric systems. Chemical Science, 2022, 13, 5176-5185.	3.7	14
3	Assembly, structure and thermoelectric properties of 1,1′-dialkynylferrocene â€~hinges'. Chemical Science, 2022, 13, 8380-8387.	3.7	8
4	Unraveling the Causes of the Instability of Au <i>_n</i> (SR) <i>_x</i> Nanoclusters on Au(111). Chemistry of Materials, 2021, 33, 3428-3435.	3.2	3
5	Multivariate Approach to Single-Molecule Thermopower and Electrical Conductance Measurements. Journal of Physical Chemistry C, 2021, 125, 26256-26262.	1.5	1
6	Taming the thermodiffusion of alkali halide solutions in silica nanopores. Nanoscale, 2020, 12, 23626-23635.	2.8	4
7	Stepwise electrochemical deposition and single-molecule conductance of nucleic acid analogues. Electrochimica Acta, 2020, 346, 136159.	2.6	0
8	Dynamics of RS-(Au-SR) _{<i>x</i>} Staple Motifs on Metal Surfaces: From Nanoclusters to 2D Surfaces. Journal of Physical Chemistry C, 2020, 124, 5452-5459.	1.5	6
9	Scale-Up of Room-Temperature Constructive Quantum Interference from Single Molecules to Self-Assembled Molecular-Electronic Films. Journal of the American Chemical Society, 2020, 142, 8555-8560.	6.6	34
10	Combined Impact of Denticity and Orientation on Molecular-Scale Charge Transport. Journal of Physical Chemistry C, 2020, 124, 9460-9469.	1.5	4
11	Shedding Light on the Interfacial Structure of Low-Coverage Alkanethiol Lattices. Journal of Physical Chemistry C, 2020, 124, 26748-26758.	1.5	6
12	Unsupervised classification of single-molecule data with autoencoders and transfer learning. Machine Learning: Science and Technology, 2020, 1, 035013.	2.4	16
13	Surface Design: Exploiting the Instability of Small Nanoparticles on Metallic Substrates. ECS Meeting Abstracts, 2020, MA2020-01, 2865-2865.	0.0	0
14	DNA Assay-on-a-String: Rapid Detection of Marker Panels Against Sepsis. ECS Meeting Abstracts, 2020, MA2020-01, 1966-1966.	0.0	0
15	Surface Design: Exploiting the Instability of Small Nanoparticles on Metallic Substrates. ECS Transactions, 2020, 97, 885-892.	0.3	0
16	Assisted delivery of anti-tumour platinum drugs using DNA-coiling gold nanoparticles bearing lumophores and intercalators: towards a new generation of multimodal nanocarriers with enhanced action. Chemical Science, 2019, 10, 9244-9256.	3.7	17
17	Single-Molecule Analysis with Solid-State Nanopores. Annual Review of Analytical Chemistry, 2019, 12, 371-387.	2.8	60
18	Gold-Induced Desulfurization in a Bis(ferrocenyl) Alkane Dithiol. Organometallics, 2019, 38, 2227-2232.	1.1	0

#	Article	IF	CITATIONS
19	Rapid Fragmentation during Seeded Lysozyme Aggregation Revealed at the Single Molecule Level. Analytical Chemistry, 2019, 91, 6880-6886.	3.2	7
20	Cyclic Voltammetry Peaks Due to Deep Level Traps in Si Nanowire Array Electrodes. IEEE Nanotechnology Magazine, 2018, 17, 154-160.	1.1	2
21	Disentangling chemical effects in ionic-liquid-based Cu leaching from chalcopyrite. Journal of Electroanalytical Chemistry, 2018, 819, 130-135.	1.9	10
22	A Redoxâ€Activated Gâ€Quadruplex DNA Binder Based on a Platinum(IV)–Salphen Complex. Angewandte Chemie, 2018, 130, 316-319.	1.6	17
23	Electrochemical processes at the nanoscale. Current Opinion in Electrochemistry, 2018, 7, 138-145.	2.5	16
24	Controlling the Dynamic Instability of Capped Metal Nanoparticles on Metallic Surfaces. Journal of Physical Chemistry Letters, 2018, 9, 57-62.	2.1	13
25	A Redoxâ€Activated Gâ€Quadruplex DNA Binder Based on a Platinum(IV)–Salphen Complex. Angewandte Chemie - International Edition, 2018, 57, 310-313.	7.2	52
26	Electric Single-Molecule Hybridization Detector for Short DNA Fragments. Analytical Chemistry, 2018, 90, 14063-14071.	3.2	15
27	Cross-plane conductance through a graphene/molecular monolayer/Au sandwich. Nanoscale, 2018, 10, 19791-19798.	2.8	12
28	Ferrocene―and Biferrocene ontaining Macrocycles towards Singleâ€Molecule Electronics. Angewandte Chemie - International Edition, 2017, 56, 6838-6842.	7.2	42
29	Ferrocene―and Biferrocene ontaining Macrocycles towards Singleâ€Molecule Electronics. Angewandte Chemie, 2017, 129, 6942-6946.	1.6	6
30	Singleâ€Molecule Conductance Studies of Organometallic Complexes Bearing 3â€Thienyl Contacting Groups. Chemistry - A European Journal, 2017, 23, 2133-2143.	1.7	50
31	A computational approach to calculate the heat of transport of aqueous solutions. Scientific Reports, 2017, 7, 44833.	1.6	22
32	The role of ion–water interactions in determining the Soret coefficient of LiCl aqueous solutions. Physical Chemistry Chemical Physics, 2017, 19, 9575-9583.	1.3	25
33	TiO ₂ coated Si nanowire electrodes for electrochemical double layer capacitors in room temperature ionic liquid. Journal Physics D: Applied Physics, 2017, 50, 415503.	1.3	11
34	Progress in single-biomolecule analysis with solid-state nanopores. Current Opinion in Electrochemistry, 2017, 4, 159-165.	2.5	16
35	High-Vacuum Deposition of Biferrocene Thin Films on Room-Temperature Substrates. Chemistry of Materials, 2017, 29, 8663-8669.	3.2	4
36	Single Molecule Trapping and Sensing Using Dual Nanopores Separated by a Zeptoliter Nanobridge. Nano Letters, 2017, 17, 6376-6384.	4.5	52

#	Article	IF	CITATIONS
37	lonic liquids for metal extraction from chalcopyrite: solid, liquid and gas phase studies. Physical Chemistry Chemical Physics, 2017, 19, 21556-21564.	1.3	18
38	Deep learning for single-molecule science. Nanotechnology, 2017, 28, 423001.	1.3	54
39	Insulated molecular wires: inhibiting orthogonal contacts in metal complex based molecular junctions. Nanoscale, 2017, 9, 9902-9912.	2.8	30
40	Functionalised Biferrocene Systems towards Molecular Electronics. European Journal of Inorganic Chemistry, 2017, 2017, 496-504.	1.0	18
41	Electrochemistry of single nanoparticles: general discussion. Faraday Discussions, 2016, 193, 387-413.	1.6	13
42	Nanopores: general discussion. Faraday Discussions, 2016, 193, 507-531.	1.6	1
43	A robotic platform for high-throughput electrochemical analysis of chalcopyrite leaching. Green Chemistry, 2016, 18, 1930-1937.	4.6	13
44	Oxide-coated silicon nanowire array capacitor electrodes in room temperature ionic liquid. Electrochimica Acta, 2016, 210, 32-37.	2.6	13
45	High-bandwidth detection of short DNA in nanopipettes. Faraday Discussions, 2016, 193, 459-470.	1.6	19
46	Unsupervised vector-based classification of single-molecule charge transport data. Nature Communications, 2016, 7, 12922.	5.8	62
47	Oligomeric ferrocene rings. Nature Chemistry, 2016, 8, 825-830.	6.6	82
48	Probing DNA Translocations in Nanopipettes using High-Speed Detection Electronics. Biophysical Journal, 2016, 110, 655a.	0.2	0
49	Principles of a Single-Molecule Rectifier in Electrolytic Environment. Journal of Physical Chemistry C, 2016, 120, 3089-3106.	1.5	11
50	Complexes comprising â€~dangling' phosphorus arms and tri(hetero)metallic butenynyl moieties. Journal of Organometallic Chemistry, 2016, 812, 145-150.	0.8	1
51	Trianguleniums as Optical Probes for Gâ€Quadruplexes: Aâ€Photophysical, Electrochemical, and Computational Study. Chemistry - A European Journal, 2016, 22, 4129-4139.	1.7	29
52	Single-Molecule Studies of Unlabeled Full-Length p53 Protein Binding to DNA. Journal of Physical Chemistry B, 2016, 120, 2106-2114.	1.2	17
53	High-speed detection of DNA translocation in nanopipettes. Nanoscale, 2016, 8, 7604-7611.	2.8	27
54	Low Noise Nanopore Platforms Optimised for the Synchronised Optical and Electrical Detection of Biomolecules. RSC Nanoscience and Nanotechnology, 2016, , 270-300.	0.2	1

#	Article	IF	CITATIONS
55	Synchronized Optical and Electronic Detection of Biomolecules Using a Low Noise Nanopore Platform. ACS Nano, 2015, 9, 1740-1748.	7.3	62
56	Electrodeposition and Bipolar Effects in Metallized Nanopores and Their Use in the Detection of Insulin. Analytical Chemistry, 2015, 87, 2337-2344.	3.2	27
57	New Insights into Single-Molecule Junctions Using a Robust, Unsupervised Approach to Data Collection and Analysis. Journal of the American Chemical Society, 2015, 137, 9971-9981.	6.6	50
58	Which way up? Recognition of homologous DNA segments in parallel and antiparallel alignments. Journal of Chemical Physics, 2015, 142, 045101.	1.2	12
59	Challenges of Biomolecular Detection at the Nanoscale: Nanopores and Microelectrodes. Analytical Chemistry, 2015, 87, 5470-5475.	3.2	27
60	The Unusual Redox Properties of Fluoroferrocenes Revealed through a Comprehensive Study of the Haloferrocenes. Organometallics, 2015, 34, 5461-5469.	1.1	26
61	Electronic structures of cyclometalated palladium complexes in the higher oxidation states. Dalton Transactions, 2015, 44, 16586-16591.	1.6	17
62	Avoiding problem reactions at the ferrocenyl-alkyne motif: a convenient synthesis of model, redox-active complexes for molecular electronics. Dalton Transactions, 2014, 43, 15287-15290.	1.6	14
63	High Precision Fabrication and Positioning of Nanoelectrodes in a Nanopore. ACS Nano, 2014, 8, 1940-1948.	7.3	33
64	Single Molecule Ionic Current Sensing in Segmented Flow Microfluidics. Analytical Chemistry, 2014, 86, 1864-1871.	3.2	21
65	SSB Binding to Single-Stranded DNA Probed Using Solid-State Nanopore Sensors. Journal of Physical Chemistry B, 2014, 118, 11605-11612.	1.2	33
66	Probing DNA Methylation in Breast Cancer Cell Lines Using Solid-State Nanopores. Biophysical Journal, 2014, 106, 18a.	0.2	2
67	Label-Free Detection of the P53-DNA Complex. Biophysical Journal, 2014, 106, 18a.	0.2	0
68	Label-Free Pb(II) Whispering Gallery Mode Sensing Using Self-Assembled Glutathione-Modified Gold Nanoparticles on an Optical Microcavity. Analytical Chemistry, 2014, 86, 6299-6306.	3.2	51
69	Design and characterization of a current sensing platform for silicon-based nanopores with integrated tunneling nanoelectrodes. Analog Integrated Circuits and Signal Processing, 2013, 77, 333-343.	0.9	16
70	Rapid Ultrasensitive Single Particle Surface-Enhanced Raman Spectroscopy Using Metallic Nanopores. Nano Letters, 2013, 13, 4602-4609.	4.5	100
71	Mapping the Ion Current Distribution in Nanopore/Electrode Devices. ACS Nano, 2013, 7, 547-555.	7.3	13
72	Oxidative purification of halogenated ferrocenes. Dalton Transactions, 2013, 42, 2813-2816.	1.6	57

#	Article	IF	CITATIONS
73	Ion Transport in Nanopores. , 2013, , 1-30.		15
74	Rapid Sonogashira cross-coupling of iodoferrocenes and the unexpected cyclo-oligomerization of 4-ethynylphenylthioacetate. Chemical Communications, 2013, 49, 5663.	2.2	31
75	Branched Redox-Active Complexes for the Study of Novel Charge Transport Processes. Organometallics, 2013, 32, 6053-6060.	1.1	25
76	Single-Molecule Studies of Intrinsically Disordered Proteins Using Solid-State Nanopores. Analytical Chemistry, 2013, 85, 2449-2456.	3.2	71
77	Wafer-Scale Ion Beam Lithography of Nanopore Devices. Microscopy and Microanalysis, 2013, 19, 912-913.	0.2	1
78	Solid-state nanopores for biosensing with submolecular resolution. Biochemical Society Transactions, 2012, 40, 624-628.	1.6	18
79	SSB Enhances Detection of ssDNA Translocation through Solid-State Nanopores. Biophysical Journal, 2012, 102, 205a.	0.2	1
80	Probing Electron Transport in Proteins at Room Temperature with Single-Molecule Precision. ACS Nano, 2012, 6, 13-16.	7.3	10
81	Low-noise dual-channel current amplifier for DNA sensing with solid-state nanopores. , 2012, , .		1
82	Electrochemical tunnelling sensors and their potential applications. Nature Communications, 2012, 3, 829.	5.8	58
83	Ultrafast Surface Enhanced Resonance Raman Scattering Detection in Droplet-Based Microfluidic Systems. Analytical Chemistry, 2011, 83, 3076-3081.	3.2	103
84	Flow-Based Autocorrelation Studies for the Detection and Investigation of Single-Particle Surface-Enhanced Resonance Raman Spectroscopic Events. Analytical Chemistry, 2011, 83, 1418-1424.	3.2	10
85	DNA Tunneling Detector Embedded in a Nanopore. Nano Letters, 2011, 11, 279-285.	4.5	214
86	How to Understand and Interpret Current Flow in Nanopore/Electrode Devices. ACS Nano, 2011, 5, 6714-6725.	7.3	30
87	A new look for nanopore sensing. Nature Nanotechnology, 2011, 6, 195-196.	15.6	13
88	Resizing Metal oated Nanopores Using a Scanning Electron Microscope. Small, 2011, 7, 2736-2741.	5.2	6
89	Nanopore/electrode structures for single-molecule biosensing. Electrochimica Acta, 2010, 55, 8237-8243.	2.6	34
90	New developments in nanopore research—from fundamentals to applications. Journal of Physics Condensed Matter, 2010, 22, 450301.	0.7	12

#	Article	IF	CITATIONS
91	Layering and shear properties of an ionic liquid, 1-ethyl-3-methylimidazolium ethylsulfate, confined to nano-films between mica surfaces. Physical Chemistry Chemical Physics, 2010, 12, 1243-1247.	1.3	269
92	Precise electrochemical fabrication of sub-20 nm solid-state nanopores for single-molecule biosensing. Journal of Physics Condensed Matter, 2010, 22, 454128.	0.7	33
93	Fabrication of Metallised Solid-State Nanopores Using Electrodeposition with Ionic Current Feedback. Biophysical Journal, 2010, 98, 598a.	0.2	0
94	Interfacial redox processes of cytochrome b562. Physical Chemistry Chemical Physics, 2009, 11, 7430.	1.3	35
95	Single-Molecule Electron Transfer in Electrochemical Environments. Chemical Reviews, 2008, 108, 2737-2791.	23.0	276
96	Charge transport in nanoscale junctions. Journal of Physics Condensed Matter, 2008, 20, 370301.	0.7	4
97	Charge Transfer And Interfacial Bioelectrochemistry At The Nanoscale And Single-Molecule Levels. , 2008, , 249-302.		6
98	Intrinsic Multistate Switching of Gold Clusters through Electrochemical Gating. Journal of the American Chemical Society, 2007, 129, 9162-9167.	6.6	61
99	A Density Functional Theory Study of the Electronic Properties of Os(II) and Os(III) Complexes Immobilized on Au(111). Inorganic Chemistry, 2007, 46, 117-124.	1.9	12
100	Single-Molecule Conductance of Redox Molecules in Electrochemical Scanning Tunneling Microscopyâ€. Journal of Physical Chemistry B, 2007, 111, 6703-6712.	1.2	100
101	Scanning Tunneling Spectroscopy in an Ionic Liquid. Journal of the American Chemical Society, 2006, 128, 6574-6575.	6.6	92
102	Mechanism of Electrochemical Charge Transport in Individual Transition Metal Complexes. Journal of the American Chemical Society, 2006, 128, 17132-17138.	6.6	94
103	In situscanning tunnelling spectroscopy of inorganic transition metal complexes. Faraday Discussions, 2006, 131, 265-279.	1.6	97
104	Voltammetry and in situ scanning tunnelling microscopy of de novo designed heme protein monolayers on Au(111)-electrode surfaces. Bioelectrochemistry, 2006, 69, 193-200.	2.4	17
105	Potential-induced structural transitions of DL-homocysteine monolayers on Au(111) electrode surfaces. Chemical Physics, 2005, 319, 210-221.	0.9	37
106	Electrochemistry and bioelectrochemistry towards the single-molecule level: Theoretical notions and systems. Electrochimica Acta, 2005, 50, 3143-3159.	2.6	51
107	Electrochemical and Spectroscopic Investigations of Immobilized De Novo Designed Heme Proteins on Metal Electrodes. ChemPhysChem, 2005, 6, 961-970.	1.0	26
108	Transistor Effects and In Situ STM of Redox Molecules at Room Temperature. IEEE Nanotechnology Magazine, 2005, 4, 430-434.	1.1	38

#	Article	IF	CITATIONS
109	Transistor-like Behavior of Transition Metal Complexes. Nano Letters, 2005, 5, 1451-1455.	4.5	144
110	Prototype for In Situ Detection of Atmospheric NO3and N2O5via Laser-Induced Fluorescence. Environmental Science & Technology, 2003, 37, 5732-5738.	4.6	71
111	Non-invasive diagnosis of hepatic cirrhosis by transit-time analysis of an ultrasound contrast agent. Lancet, The, 1999, 353, 1579-1583.	6.3	242
112	Prolongation and optimization of Doppler enhancement with a microbubble US contrast agent by using continuous infusion: preliminary experience Radiology, 1998, 207, 339-347.	3.6	150
113	Transistor effects and in situ STM of redox molecules at room temperature. , 0, , .		1
114	Chapter 5. Electrochemical applications of nanopore systems. SPR Electrochemistry, 0, , 155-186.	0.7	1