Jessica Marianne Rosenholm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/519210/publications.pdf

Version: 2024-02-01

180 papers 8,907 citations

45 h-index 88 g-index

185 all docs

185
docs citations

185 times ranked 11381 citing authors

#	Article	IF	Citations
1	Influences of Material Characteristics on Ibuprofen Drug Loading and Release Profiles from Ordered Micro- and Mesoporous Silica Matrices. Chemistry of Materials, 2004, 16, 4160-4167.	6.7	549
2	Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles – opportunities & challenges. Nanoscale, 2010, 2, 1870.	5.6	504
3	Targeting of Porous Hybrid Silica Nanoparticles to Cancer Cells. ACS Nano, 2009, 3, 197-206.	14.6	477
4	Solid Lipid Nanoparticles: Emerging Colloidal Nano Drug Delivery Systems. Pharmaceutics, 2018, 10, 191.	4.5	374
5	Nanoparticles in targeted cancer therapy: mesoporous silica nanoparticles entering preclinical development stage. Nanomedicine, 2012, 7, 111-120.	3.3	233
6	Targeted Intracellular Delivery of Hydrophobic Agents using Mesoporous Hybrid Silica Nanoparticles as Carrier Systems. Nano Letters, 2009, 9, 3308-3311.	9.1	209
7	Mesoporous silica materials: From physico-chemical properties to enhanced dissolution of poorly water-soluble drugs. Journal of Controlled Release, 2017, 262, 329-347.	9.9	202
8	Mesoporous Silica Nanoparticles as Drug Delivery Systems for Targeted Inhibition of Notch Signaling in Cancer. Molecular Therapy, 2011, 19, 1538-1546.	8.2	197
9	Towards establishing structure–activity relationships for mesoporous silica in drug delivery applications. Journal of Controlled Release, 2008, 128, 157-164.	9.9	188
10	Wet-Chemical Analysis of Surface Concentration of Accessible Groups on Different Amino-Functionalized Mesoporous SBA-15 Silicas. Chemistry of Materials, 2007, 19, 5023-5034.	6.7	174
11	Cobalt oxide species supported on SBA-15, KIT-5 and KIT-6 mesoporous silicas for ethyl acetate total oxidation. Applied Catalysis B: Environmental, 2009, 89, 365-374.	20.2	169
12	Size, Stability, and Porosity of Mesoporous Nanoparticles Characterized with Light Scattering. Nanoscale Research Letters, 2017, 12, 74.	5.7	168
13	Cancerâ€Cellâ€Specific Induction of Apoptosis Using Mesoporous Silica Nanoparticles as Drugâ€Delivery Vectors. Small, 2010, 6, 1234-1241.	10.0	163
14	Multifunctional Mesoporous Silica Nanoparticles for Combined Therapeutic, Diagnostic and Targeted Action in Cancer Treatment. Current Drug Targets, 2011, 12, 1166-1186.	2.1	156
15	Synthesis and characterization of pore size-tunable magnetic mesoporous silica nanoparticles. Journal of Colloid and Interface Science, 2011, 361, 16-24.	9.4	151
16	On the Nature of the BrÃ,nsted Acidic Groups on Native and Functionalized Mesoporous Siliceous SBA-15 as Studied by Benzylamine Adsorption from Solution. Langmuir, 2007, 23, 4315-4323.	3.5	147
17	Photon upconversion sensitized nanoprobes for sensing and imaging of pH. Nanoscale, 2014, 6, 6837-6843.	5.6	126
18	Multi-dimensional single-spin nano-optomechanics with a levitated nanodiamond. Nature Photonics, 2015, 9, 653-657.	31.4	119

#	Article	IF	Citations
19	Amino-functionalization of large-pore mesoscopically ordered silica by a one-step hyperbranching polymerization of a surface-grown polyethyleneimine. Chemical Communications, 2006, , 3909-3911.	4.1	116
20	Core–shell designs of photoluminescent nanodiamonds with porous silica coatings for bioimaging and drug delivery II: application. Nanoscale, 2013, 5, 3713.	5.6	111
21	Polydopamine Coatings in Confined Nanopore Space: Toward Improved Retention and Release of Hydrophilic Cargo. Journal of Physical Chemistry C, 2015, 119, 24512-24521.	3.1	111
22	Nanogels as drug-delivery systems: a comprehensive overview. Therapeutic Delivery, 2019, 10, 697-717.	2.2	109
23	Ratiometric Sensing and Imaging of Intracellular pH Using Polyethylenimine-Coated Photon Upconversion Nanoprobes. Analytical Chemistry, 2017, 89, 1501-1508.	6.5	95
24	Inhibiting Notch Activity in Breast Cancer Stem Cells by Glucose Functionalized Nanoparticles Carrying ¹³ -secretase Inhibitors. Molecular Therapy, 2016, 24, 926-936.	8.2	91
25	Evolving Technologies and Strategies for Combating Antibacterial Resistance in the Advent of the Postantibiotic Era. Advanced Functional Materials, 2020, 30, 1908783.	14.9	91
26	Cancer-cell targeting and cell-specific delivery by mesoporous silica nanoparticles. Journal of Materials Chemistry, 2010, 20, 2707.	6.7	89
27	Hyperbranching Surface Polymerization as a Tool for Preferential Functionalization of the Outer Surface of Mesoporous Silica. Chemistry of Materials, 2008, 20, 1126-1133.	6.7	87
28	Green Nanotechnology: Advancement in Phytoformulation Research. Medicines (Basel, Switzerland), 2019, 6, 39.	1.4	85
29	Mesoporous silica nanoparticles in tissue engineering – a perspective. Nanomedicine, 2016, 11, 391-402.	3.3	83
30	Sugar-decorated mesoporous silica nanoparticles as delivery vehicles for the poorly soluble drug celastrol enables targeted induction of apoptosis in cancer cells. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 96, 11-21.	4.3	75
31	Mesoporous silica nanoparticles with redox-responsive surface linkers for charge-reversible loading and release of short oligonucleotides. Dalton Transactions, 2014, 43, 4115.	3.3	74
32	Feasibility Study of the Permeability and Uptake of Mesoporous Silica Nanoparticles across the Blood-Brain Barrier. PLoS ONE, 2016, 11, e0160705.	2.5	74
33	Large-pore mesoporous silica-coated magnetite core-shell nanocomposites and their relevance for biomedical applications. Microporous and Mesoporous Materials, 2011, 145, 14-20.	4.4	73
34	CaP coated mesoporous polydopamine nanoparticles with responsive membrane permeation ability for combined photothermal and siRNA therapy. Acta Biomaterialia, 2019, 86, 416-428.	8.3	70
35	Core–shell designs of photoluminescent nanodiamonds with porous silica coatings for bioimaging and drug delivery I: fabrication. Journal of Materials Chemistry B, 2013, 1, 2358.	5.8	66
36	Intranasal Nanoemulsions for Direct Nose-to-Brain Delivery of Actives for CNS Disorders. Pharmaceutics, 2020, 12, 1230.	4.5	65

#	Article	IF	Citations
37	Nanodiamond-Based Composite Structures for Biomedical Imaging and Drug Delivery. Journal of Nanoscience and Nanotechnology, 2015, 15, 959-971.	0.9	62
38	Shape engineering vs organic modification of inorganic nanoparticles as a tool for enhancing cellular internalization. Nanoscale Research Letters, 2012, 7, 358.	5.7	61
39	Magnetic mesoporous silica nanospheres as DNA/drug carrier. Materials Letters, 2012, 67, 379-382.	2.6	61
40	Stimuli-responsive hybrid nanocarriers developed by controllable integration of hyperbranched PEI with mesoporous silica nanoparticles for sustained intracellular siRNA delivery. International Journal of Nanomedicine, 2016, Volume 11, 6591-6608.	6.7	53
41	Multimodality Imaging of Silica and Silicon Materials In Vivo. Advanced Materials, 2018, 30, e1703651.	21.0	53
42	Preparation, characterization and catalytic behavior in methanol decomposition of nanosized iron oxide particles within large pore ordered mesoporous silicas. Microporous and Mesoporous Materials, 2006, 89, 209-218.	4.4	51
43	Shape engineering boosts antibacterial activity of chitosan coated mesoporous silica nanoparticle doped with silver: a mechanistic investigation. Journal of Materials Chemistry B, 2016, 4, 3292-3304.	5.8	50
44	Critical evaluation of the state of iron oxide nanoparticles on different mesoporous silicas prepared by an impregnation method. Microporous and Mesoporous Materials, 2008, 112, 327-337.	4.4	48
45	Functionalization of graphene oxide nanostructures improves photoluminescence and facilitates their use as optical probes in preclinical imaging. Nanoscale, 2015, 7, 10410-10420.	5.6	48
46	Intracellular Trafficking of Fluorescent Nanodiamonds and Regulation of Their Cellular Toxicity. ACS Omega, 2017, 2, 2689-2693.	3.5	47
47	Formulation and optimization of lyophilized nanosuspension tablets to improve the physicochemical properties and provide immediate release of silymarin. International Journal of Pharmaceutics, 2019, 563, 217-227.	5.2	45
48	Fabrication and Characterization of Diclofenac Sodium Loaded Hydrogels of Sodium Alginate as Sustained Release Carrier. Gels, 2021, 7, 10.	4.5	45
49	Evolution of aluminosilicate structure and mullite crystallization from homogeneous nanoparticulate sol–gel precursor with organic additives. Journal of the European Ceramic Society, 2008, 28, 1749-1762.	5.7	44
50	Diamondâ€"Water Coupling Effects in Raman and Photoluminescence Spectra of Nanodiamond Colloidal Suspensions. Journal of Physical Chemistry C, 2012, 116, 24314-24319.	3.1	44
51	Analyses in zebrafish embryos reveal that nanotoxicity profiles are dependent on surface-functionalization controlled penetrance of biological membranes. Scientific Reports, 2017, 7, 8423.	3.3	44
52	Formulation and optimization of drug-loaded mesoporous silica nanoparticle-based tablets to improve the dissolution rate of the poorly water-soluble drug silymarin. European Journal of Pharmaceutical Sciences, 2020, 142, 105103.	4.0	44
53	Nanodiamonds for advanced optical bioimaging and beyond. Current Opinion in Colloid and Interface Science, 2019, 39, 220-231.	7.4	43
54	Curcumin associated poly(allylamine hydrochloride)-phosphate self-assembled hierarchically ordered nanocapsules: size dependent investigation on release and DPPH scavenging activity of curcumin. RSC Advances, 2015, 5, 18740-18750.	3.6	42

#	Article	IF	CITATIONS
55	Iron and copper oxide modified SBA-15 materials as catalysts in methanol decomposition: Effect of copolymer template removal. Applied Catalysis A: General, 2007, 318, 234-243.	4.3	38
56	Polyethyleneimine-functionalized large pore ordered silica materials for poorly water-soluble drug delivery. Journal of Materials Science, 2014, 49, 1437-1447.	3.7	38
57	Rational evaluation of the utilization of PEG-PEI copolymers for the facilitation of silica nanoparticulate systems in biomedical applications. Journal of Colloid and Interface Science, 2014, 418, 300-310.	9.4	38
58	Design considerations for mesoporous silica nanoparticulate systems in facilitating biomedical applications. Open Material Sciences, 2014, 1 , .	0.8	38
59	Tailored Approaches in Drug Development and Diagnostics: From Molecular Design to Biological Model Systems. Advanced Healthcare Materials, 2017, 6, 1700258.	7.6	38
60	Inkjet Printing of Drug-Loaded Mesoporous Silica Nanoparticlesâ€"A Platform for Drug Development. Molecules, 2017, 22, 2020.	3.8	38
61	Facile methodology of nanoemulsion preparation using oily polymer for the delivery of poorly soluble drugs. Drug Delivery and Translational Research, 2020, 10, 1228-1240.	5.8	38
62	Peritumoral Microgel Reservoir for Longâ€Term Lightâ€Controlled Tripleâ€Synergistic Treatment of Osteosarcoma with Single Ultraâ€Low Dose. Small, 2021, 17, e2100479.	10.0	38
63	Stimuli-Responsive, Plasmonic Nanogel for Dual Delivery of Curcumin and Photothermal Therapy for Cancer Treatment. Frontiers in Chemistry, 2020, 8, 602941.	3.6	37
64	Evidence of carbon nanoparticle–solvent molecule interactions in Raman and fluorescence spectra. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2512-2518.	1.8	36
65	Solution Conformation of Polymer Brushes Determines Their Interactions with DNA and Transfection Efficiency. Biomacromolecules, 2017, 18, 4121-4132.	5.4	36
66	Anti-bacterial activity of inorganic nanomaterials and their antimicrobial peptide conjugates against resistant and non-resistant pathogens. International Journal of Pharmaceutics, 2020, 586, 119531.	5.2	35
67	Comparative safety evaluation of silica-based particles. Toxicology in Vitro, 2015, 30, 355-363.	2.4	34
68	Targeted delivery of a novel anticancer compound anisomelic acid using chitosan-coated porous silica nanorods for enhancing the apoptotic effect. Biomaterials Science, 2015, 3, 103-111.	5.4	34
69	Tethered Lipid Bilayer Gates: Toward Extended Retention of Hydrophilic Cargo in Porous Nanocarriers. Advanced Functional Materials, 2014, 24, 2352-2360.	14.9	33
70	STEDâ€TEM Correlative Microscopy Leveraging Nanodiamonds as Intracellular Dual ontrast Markers. Small, 2018, 14, 1701807.	10.0	32
71	Fluorescent single-digit detonation nanodiamond for biomedical applications. Methods and Applications in Fluorescence, 2018, 6, 035010.	2.3	32
72	Study of adsorption properties of functionalized nanodiamonds in aqueous solutions of metal salts using optical spectroscopy. Journal of Alloys and Compounds, 2014, 586, S436-S439.	5 . 5	31

#	Article	IF	CITATIONS
73	Targeted modulation of cell differentiation in distinct regions of the gastrointestinal tract via oral administration of differently PEG-PEI functionalized mesoporous silica nanoparticles. International Journal of Nanomedicine, 2016, 11, 299.	6.7	31
74	Controlled synthesis, bioimaging and toxicity assessments in strong red emitting Mn ²⁺ doped NaYF ₄ :Yb ³⁺ /Ho ³⁺ nanophosphors. RSC Advances, 2016, 6, 53698-53704.	3.6	31
75	Active targeting of mesoporous silica drug carriers enhances \hat{I}^3 -secretase inhibitor efficacy in an <i>in vivo</i> model for breast cancer. Nanomedicine, 2014, 9, 971-987.	3.3	30
76	Renewable poly ($\hat{\Gamma}$ -decalactone) based block copolymer micelles as drug delivery vehicle: in vitro and in vivo evaluation. Saudi Pharmaceutical Journal, 2018, 26, 358-368.	2.7	30
77	Comparison of Polydopamine-Coated Mesoporous Silica Nanorods and Spheres for the Delivery of Hydrophilic and Hydrophobic Anticancer Drugs. International Journal of Molecular Sciences, 2019, 20, 3408.	4.1	30
78	On the Complexity of Electrostatic Suspension Stabilization of Functionalized Silica Nanoparticles for Biotargeting and Imaging Applications. Journal of Nanomaterials, 2008, 2008, 1-9.	2.7	29
79	Lipid Bilayer-Gated Mesoporous Silica Nanocarriers for Tumor-Targeted Delivery of Zoledronic Acid <i>in Vivo</i> . Molecular Pharmaceutics, 2017, 14, 3218-3227.	4.6	28
80	Feasibility Study of Mesoporous Silica Particles for Pulmonary Drug Delivery: Therapeutic Treatment with Dexamethasone in a Mouse Model of Airway Inflammation. Pharmaceutics, 2019, 11, 149.	4.5	28
81	Nanoparticles carrying fingolimod and methotrexate enables targeted induction of apoptosis and immobilization of invasive thyroid cancer. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 148, 1-9.	4.3	28
82	Role of Polymers in 3D Printing Technology for Drug Delivery - An Overview. Current Pharmaceutical Design, 2019, 24, 4979-4990.	1.9	28
83	Microwave-assisted one-step synthesis of acetate-capped NaYF4:Yb/Er upconversion nanocrystals and their application in bioimaging. Journal of Materials Science, 2017, 52, 5738-5750.	3.7	27
84	Digital light processing (DLP) 3D-fabricated antimicrobial hydrogel with a sustainable resin of methacrylated woody polysaccharides and hybrid silver-lignin nanospheres. Green Chemistry, 2022, 24, 2129-2145.	9.0	27
85	Expansion of the F127-templated mesostructure in aerosol-generated particles by using polypropylene glycol as a swelling agent. Microporous and Mesoporous Materials, 2008, 113, 1-13.	4.4	26
86	Prolonged Dye Release from Mesoporous Silica-Based Imaging Probes Facilitates Long-Term Optical Tracking of Cell Populations In Vivo. Small, 2016, 12, 1578-1592.	10.0	26
87	Realâ€Time Labelâ€Free Monitoring of Nanoparticle Cell Uptake. Small, 2016, 12, 6289-6300.	10.0	26
88	Mesoporous silica nanoparticles as diagnostic and therapeutic tools: how can they combat bacterial infection?. Therapeutic Delivery, 2018, 9, 241-244.	2.2	26
89	Recent Advances and Impact of Chemotherapeutic and Antiangiogenic Nanoformulations for Combination Cancer Therapy. Pharmaceutics, 2020, 12, 592.	4.5	26
90	Carbon-Based Nanomaterials for Delivery of Biologicals and Therapeutics: A Cutting-Edge Technology. Journal of Carbon Research, 2021, 7, 19.	2.7	26

#	Article	IF	CITATIONS
91	On the intracellular release mechanism of hydrophobic cargo and its relation to the biodegradation behavior of mesoporous silica nanocarriers. European Journal of Pharmaceutical Sciences, 2016, 95, 17-27.	4.0	23
92	Characterization of modified mesoporous silica nanoparticles as vectors for siRNA delivery. Asian Journal of Pharmaceutical Sciences, 2018, 13, 592-599.	9.1	23
93	Molecular Confinement in Fluorescent Magnetic Mesoporous Silica Nanoparticles: Effect of Pore Size on Multifunctionality. ChemPhysChem, 2012, 13, 2016-2019.	2.1	22
94	Advances in thermo-responsive polymers exhibiting upper critical solution temperature (UCST). EXPRESS Polymer Letters, 2019, 13, 974-992.	2.1	22
95	Brilliant blue, green, yellow, and red fluorescent diamond particles: synthesis, characterization, and multiplex imaging demonstrations. Nanoscale, 2019, 11, 11584-11595.	5.6	22
96	Evolution of Nanotechnology in Delivering Drugs to Eyes, Skin and Wounds via Topical Route. Pharmaceuticals, 2020, 13, 167.	3.8	22
97	Fundamental Aspects of Lipid-Based Excipients in Lipid-Based Product Development. Pharmaceutics, 2022, 14, 831.	4.5	22
98	Mesoporous silica nanoparticles facilitating the dissolution of poorly soluble drugs in orodispersible films. European Journal of Pharmaceutical Sciences, 2018, 122, 152-159.	4.0	21
99	Therapeutic Potential of Polymer-Coated Mesoporous Silica Nanoparticles. Applied Sciences (Switzerland), 2020, 10, 289.	2.5	21
100	Preparation of curcumin loaded mesoporous silica nanoparticles: Determining polarizability inside the mesopores. Materials Research Bulletin, 2016, 84, 267-272.	5.2	20
101	Effective Delivery of the CRISPR/Cas9 System Enabled by Functionalized Mesoporous Silica Nanoparticles for GFPâ€Tagged Paxillin Knockâ€In. Advanced Therapeutics, 2021, 4, 2000072.	3.2	20
102	Polymer-Drug Conjugates as Nanotheranostic Agents. Journal of Nanotheranostics, 2021, 2, 63-81.	3.1	20
103	Sol-gel synthesis of a nanoparticulate aluminosilicate precursor for homogeneous mullite ceramics. Journal of Materials Research, 2006, 21, 1279-1285.	2.6	19
104	Optical imaging of fluorescent carbon biomarkers using artificial neural networks. Journal of Biomedical Optics, 2014, 19, 117007.	2.6	19
105	One-pot synthesis of pore-expanded hollow mesoporous silica particles. Materials Letters, 2015, 143, 140-143.	2.6	19
106	NIR light-activated dual-modality cancer therapy mediated by photochemical internalization of porous nanocarriers with tethered lipid bilayers. Journal of Materials Chemistry B, 2017, 5, 8289-8298.	5.8	19
107	A method for optical imaging and monitoring of the excretion of fluorescent nanocomposites from the body using artificial neural networks. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1371-1380.	3.3	19
108	Bimodal Mesoporous CMK-5 Carbon: Selective Pore Filling with Sulfur and SnO ₂ for Lithium Battery Electrodes. ACS Applied Nano Materials, 2018, 1, 455-462.	5.0	19

#	Article	IF	Citations
109	Recent Advances in the Use of Mesoporous Silica Nanoparticles for the Diagnosis of Bacterial Infections. International Journal of Nanomedicine, 2021, Volume 16, 6575-6591.	6.7	19
110	Orodispersible films: Conception to quality by design. Advanced Drug Delivery Reviews, 2021, 178, 113983.	13.7	19
111	Synthetic polymers from renewable feedstocks: an alternative to fossil-based materials in biomedical applications. Therapeutic Delivery, 2020, 11, 297-300.	2.2	19
112	Pharmacokinetics and Tissue Disposition of Nanosystem-Entrapped Betulin After Endotracheal Administration to Rats. European Journal of Drug Metabolism and Pharmacokinetics, 2017, 42, 327-332.	1.6	18
113	Plant-Derived Natural Biomolecule Picein Attenuates Menadione Induced Oxidative Stress on Neuroblastoma Cell Mitochondria. Antioxidants, 2020, 9, 552.	5.1	18
114	Selfâ€Synthesizing Nanorods from Dynamic Combinatorial Libraries against Drug Resistant Cancer. Angewandte Chemie - International Edition, 2021, 60, 3062-3070.	13.8	18
115	Synthesis and Evaluation of Novel Functional Polymers Derived from Renewable Jasmine Lactone for Stimuliâ€Responsive Drug Delivery. Advanced Functional Materials, 2021, 31, 2101998.	14.9	18
116	FRET-reporter nanoparticles to monitor redox-induced intracellular delivery of active compounds. RSC Advances, 2014, 4, 16429-16437.	3.6	17
117	Current Approaches for Exploration of Nanoparticles as Antibacterial Agents. , 0, , .		16
118	Improving the knock-in efficiency of the MOF-encapsulated CRISPR/Cas9 system through controllable embedding structures. Nanoscale, 2021, 13, 16525-16532.	5.6	16
119	Physicochemical and catalytic properties of grafted vanadium species on different mesoporous silicas. Journal of Colloid and Interface Science, 2008, 321, 342-349.	9.4	15
120	Combination of magnetic field and surface functionalization for reaching synergistic effects in cellular labeling by magnetic core–shell nanospheres. Biomaterials Science, 2014, 2, 1750-1760.	5.4	14
121	Polycaprolactone-gelatin nanofibers incorporated with dual antibiotic-loaded carboxyl-modified silica nanoparticles. Journal of Materials Science, 2020, 55, 17134-17150.	3.7	14
122	Interactions between polymeric nanoparticles and different buffers as investigated by zeta potential measurements and molecular dynamics simulations. View, 2022, 3, .	5.3	14
123	The viability of mesoporous silica nanoparticles for drug delivery. Therapeutic Delivery, 2015, 6, 891-893.	2.2	13
124	Modulation of the structural properties of mesoporous silica nanoparticles to enhance the T ₁ -weighted MR imaging capability. Journal of Materials Chemistry B, 2016, 4, 1720-1732.	5.8	13
125	3D Modeling of Epithelial Tumorsâ€"The Synergy between Materials Engineering, 3D Bioprinting, High-Content Imaging, and Nanotechnology. International Journal of Molecular Sciences, 2021, 22, 6225.	4.1	13
126	Semiconducting Polymer Encapsulated Mesoporous Silica Particles with Conjugated Europium Complexes: Toward Enhanced Luminescence under Aqueous Conditions. ACS Applied Materials & Los Applied Materia	8.0	12

#	Article	IF	Citations
127	Mesoporous silica coated CeO2 nanozymes with combined lipid-lowering and antioxidant activity induce long-term improvement of the metabolic profile in obese Zucker rats. Nanoscale, 2021, 13, 8452-8466.	5.6	12
128	Combination of photothermal, prodrug and tumor cell camouflage technologies for triple-negative breast cancer treatment. Materials Today Advances, 2022, 13, 100199.	5.2	12
129	Microfluidic-Assisted Fabrication of Dual-Coated pH-Sensitive Mesoporous Silica Nanoparticles for Protein Delivery. Biosensors, 2022, 12, 181.	4.7	12
130	Efficient nanozyme engineering for antibacterial therapy. Materials Futures, 2022, 1, 023502.	8.4	12
131	Self-assembly of DNA nanogels with endogenous microRNA toehold self-regulating switches for targeted gene regulation therapy. Biomaterials Science, 2022, 10, 4119-4125.	5.4	12
132	The molecular structure of disulfiram and its complexation with silica. A quantum chemical study. Computational and Theoretical Chemistry, 2008, 861, 57-61.	1.5	11
133	Super-sensitive time-resolved fluoroimmunoassay for thyroid-stimulating hormone utilizing europium(III) nanoparticle labels achieved by protein corona stabilization, short binding time, and serum preprocessing. Analytical and Bioanalytical Chemistry, 2017, 409, 3407-3416.	3.7	11
134	Printable nanomedicines: the future of customized drug delivery?. Therapeutic Delivery, 2017, 8, 721-723.	2.2	11
135	Modeling of a Hybrid Langmuir Adsorption Isotherm for Describing Interactions Between Drug Molecules and Silica Surfaces. Journal of Pharmaceutical Sciences, 2018, 107, 1392-1397.	3.3	10
136	Factors Affecting Intracellular Delivery and Release of Hydrophilic Versus Hydrophobic Cargo from Mesoporous Silica Nanoparticles on 2D and 3D Cell Cultures. Pharmaceutics, 2018, 10, 237.	4.5	10
137	Assessment of Intracellular Delivery Potential of Novel Sustainable Poly(\hat{l} -decalactone)-Based Micelles. Pharmaceutics, 2020, 12, 726.	4.5	10
138	Stromal interaction molecule 1 (STIM1) knock down attenuates invasion and proliferation and enhances the expression of thyroid-specific proteins in human follicular thyroid cancer cells. Cellular and Molecular Life Sciences, 2021, 78, 5827-5846.	5.4	10
139	Expanding horizons of mesoporous materials to non-siliceous systems. Studies in Surface Science and Catalysis, 2003, , 399-406.	1.5	9
140	The use of an impure inorganic precursor for the synthesis of highly siliceous mesoporous materials under acidic conditions. Microporous and Mesoporous Materials, 2009, 126, 272-275.	4.4	9
141	Core-Shell Structures of Upconversion Nanocrystals Coated with Silica for Near Infrared Light Enabled Optical Imaging of Cancer Cells. Micromachines, 2018, 9, 400.	2.9	9
142	Circumventing Drug Treatment? Intrinsic Lethal Effects of Polyethyleneimine (PEI)-Functionalized Nanoparticles on Glioblastoma Cells Cultured in Stem Cell Conditions. Cancers, 2021, 13, 2631.	3.7	9
143	Scalable synthesis of multicomponent multifunctional inorganic core@mesoporous silica shell nanocomposites. Materials Science and Engineering C, 2021, 128, 112272.	7.3	9
144	Mesoporous Silica Nanoparticles as Carriers for Biomolecules in Cancer Therapy. Advances in Experimental Medicine and Biology, 2021, 1295, 99-120.	1.6	9

#	Article	IF	CITATIONS
145	Cell Volume (3D) Correlative Microscopy Facilitated by Intracellular Fluorescent Nanodiamonds as Multi-Modal Probes. Nanomaterials, 2021, 11, 14.	4.1	9
146	Molecular Dynamics Prediction Verified by Experimental Evaluation of the Solubility of Different Drugs in Poly(decalactone) for the Fabrication of Polymeric Nanoemulsions. Advanced NanoBiomed Research, 2022, 2, 2100072.	3.6	9
147	Nickelmodifiedlarge poremesoporoussilicas ascatalysts for methanol decomposition. Reaction Kinetics and Catalysis Letters, 2005, 86, 275-280.	0.6	8
148	Targeting Somatostatin Receptors By Functionalized Mesoporous Silica Nanoparticles - Are We Striking Home?. Nanotheranostics, 2018, 2, 320-346.	5.2	8
149	Biodistribution, Excretion, and Toxicity of Inorganic Nanoparticles. , 2019, , 3-26.		7
150	Coculture of P. aeruginosa and S. aureus on cell derived matrix - An in vitro model of biofilms in infected wounds. Journal of Microbiological Methods, 2020, 175, 105994.	1.6	7
151	A Comprehensive Review of Patented Technologies to Fabricate Orodispersible Films: Proof of Patent Analysis (2000–2020). Pharmaceutics, 2022, 14, 820.	4.5	7
152	Ca ²⁺ enhanced photosensitizer/DNase I nanocomposite mediated bacterial eradication through biofilm disruption and photothermal therapy. Nano Select, 2022, 3, 1201-1211.	3.7	7
153	Novel, fast-processed crystalline and amorphous manganese oxide nanoparticles for stem cell labeling. Inorganic Chemistry Frontiers, 2015, 2, 640-648.	6.0	6
154	Chemical and photonic interactions in vitro and in vivo between fluorescent tracer and nanoparticle-based scavenger for enhanced molecular imaging. Materials Today Bio, 2019, 2, 100010.	5.5	6
155	Hybrid mesoporous nanorods with deeply grooved lateral faces toward cytosolic drug delivery. Biomaterials Science, 2019, 7, 5301-5311.	5.4	6
156	Fluorescent and Electron-Dense Green Color Emitting Nanodiamonds for Single-Cell Correlative Microscopy. Molecules, 2020, 25, 5897.	3.8	6
157	Selfâ€Synthesizing Nanorods from Dynamic Combinatorial Libraries against Drug Resistant Cancer. Angewandte Chemie, 2021, 133, 3099-3107.	2.0	6
158	Antiarthritic Activities of Herbal Isolates: A Comprehensive Review. Coatings, 2021, 11, 1329.	2.6	6
159	Direct Functional Protein Delivery with a Peptide into Neonatal and Adult Mammalian Inner Ear InÂVivo. Molecular Therapy - Methods and Clinical Development, 2020, 18, 511-519.	4.1	5
160	Rational evaluation of human serum albumin coated mesoporous silica nanoparticles for xenogenic-free stem cell therapies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 600, 124945.	4.7	5
161	Significance of Polymers with "Allyl―Functionality in Biomedicine: An Emerging Class of Functional Polymers. Pharmaceutics, 2022, 14, 798.	4.5	5
162	Evaluation of solubilizing potential of functional poly(jasmine lactone) micelles for hydrophobic drugs: A comparison with commercially available polymers. International Journal of Polymeric Materials and Polymeric Biomaterials, 2023, 72, 1272-1280.	3.4	5

#	Article	IF	CITATIONS
163	Poly(ethylene imine) functionalized mesoporous silica nanoparticle for biological applications. Studies in Surface Science and Catalysis, 2008, 174, 353-356.	1.5	4
164	Biofunctionalized Mesoporous Silica Nanomaterials for Targeted Drug Delivery. , 2018, , 489-520.		4
165	Synthesis of polyester from renewable feedstock: a comparison between microwave and conventional heating. Mendeleev Communications, 2019, 29, 178-180.	1.6	4
166	Quantitative bioimage analytics enables measurement of targeted cellular stress response induced by celastrol-loaded nanoparticles. Cell Stress and Chaperones, 2019, 24, 735-748.	2.9	4
167	Pore design in view of adsorption, reductive and catalytic properties of Fe or Cu oxide modified large mesoporous silicas. Studies in Surface Science and Catalysis, 2005, 158, 773-780.	1.5	3
168	Gold nanoparticle printed coverslips to facilitate fluorescence-TEM correlative microscopy. Microscopy (Oxford, England), 2018, 67, 51-54.	1.5	3
169	Core@shell structured ceria@mesoporous silica nanoantibiotics restrain bacterial growth in vitro and in vivo. Materials Science and Engineering C, 2021, , 112607.	7.3	3
170	Neural Network Classification Method for Solution of the Problem of Monitoring Theremoval of the Theranostics Nanocomposites from an Organism. Advances in Intelligent Systems and Computing, 2018, , 173-179.	0.6	2
171	Molecular and nanoscale engineering of porous silica particles for drug delivery., 2020,, 395-419.		2
172	Iron oxide nanoparticles supported on NH2- and COOH-functionalized SBA-15. Reaction Kinetics and Catalysis Letters, 2008, 95, 329-336.	0.6	1
173	Terbium complexes encapsulated in hierarchically organized hybrid MOF particles toward stable luminescence in aqueous media. CrystEngComm, 2018, 20, 4225-4229.	2.6	1
174	Mesoporous silica nanoparticles for somatostatin targeted Notch activation in animal model of pancreatic neuroendocrine cancer. Endocrine Abstracts, 0, , .	0.0	1
175	Monitoring of the excretion of fluorescent nanocomposites out of the body using artificial neural networks. , $2018, \ldots$		1
176	Nanodiamond based complexes for prolonged dexamethasone release., 2019,,.		1
177	Treating malignant glioma and brain metastasis with nanoparticles: Challenges of a peptide-based targeting and passage through the blood–brain-barrier. European Journal of Cancer, 2016, 61, S194.	2.8	O
178	Progress Toward a Spin-Optomechanics Platform With Vacuum Levitated Nanodiamonds., 2015,,.		0
179	Silica Nanoparticles for Diagnosis, Imaging and Theranostics. , 2020, , 349-394.		0
180	Macrophage/Osteoclast Specific Mesoporous Silica Nanoparticles as a Drug Vehicle in Treating Inflammatory Osteolysis. Bone Reports, 2022, 16, 101517.	0.4	0