Han-Ying Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5191928/publications.pdf

Version: 2024-02-01

95 papers

5,294 citations

39 h-index 71 g-index

98 all docs 98 docs citations 98 times ranked 6621 citing authors

#	Article	IF	CITATIONS
1	Key progresses of MOE key laboratory of macromolecular synthesis and functionalization in 2021. Chinese Chemical Letters, 2023, 34, 107592.	9.0	35
2	Incorporating polymers within a singleâ€crystal: From heterogeneous structure to multiple functions. Journal of Polymer Science, 2022, 60, 1151-1173.	3.8	16
3	Key progresses of MOE key laboratory of macromolecular synthesis and functionalization in 2020. Chinese Chemical Letters, 2022, 33, 1650-1658.	9.0	47
4	Emerging materials for circularly polarized light detection. Journal of Materials Chemistry C, 2022, 10, 2400-2410.	5.5	34
5	Piperazine-Linked Covalent Organic Frameworks with High Electrical Conductivity. Journal of the American Chemical Society, 2022, 144, 2873-2878.	13.7	106
6	Single-crystal dielectrics for organic field-effect transistors. Journal of Materials Chemistry C, 2022, 10, 4985-4998.	5.5	4
7	Controllable Anion Doping of Electron Acceptors for High-Efficiency Organic Solar Cells. ACS Energy Letters, 2022, 7, 1764-1773.	17.4	12
8	Isotropically Dyed Single Crystals Produced via Gel-Incorporation. , 2022, 4, 1207-1213.		6
9	A well-designed polymer as a three-in-one multifunctional binder for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2021, 9, 2970-2979.	10.3	16
10	Conductive Metallophthalocyanine Framework Films with High Carrier Mobility as Efficient Chemiresistors. Angewandte Chemie, 2021, 133, 10901-10908.	2.0	8
11	Conductive Metallophthalocyanine Framework Films with High Carrier Mobility as Efficient Chemiresistors. Angewandte Chemie - International Edition, 2021, 60, 10806-10813.	13.8	63
12	Stretchable Semiconducting Composite Films Fabricated via Blending Polythiophene with an Elastomer Bearing Pendant Dopant. ACS Applied Polymer Materials, 2021, 3, 3114-3124.	4.4	1
13	Bending TIPS-pentacene single crystals: from morphology to transistor performance. Journal of Materials Chemistry C, 2021, 9, 5621-5627.	5 . 5	6
14	Scaling Up Principles for Solution-Processed Organic Single-Crystalline Heterojunctions. Chemistry of Materials, 2021, 33, 19-38.	6.7	17
15	Stable Bimetallic Polyphthalocyanine Covalent Organic Frameworks as Superior Electrocatalysts. Journal of the American Chemical Society, 2021, 143, 18052-18060.	13.7	127
16	Pbl ₂ â€"TiO ₂ Bulk Heterojunctions with Long-Range Ordering for X-ray Detectors. Journal of Physical Chemistry Letters, 2021, 12, 11176-11181.	4.6	9
17	Crystallization from a Droplet: Single-Crystalline Arrays and Heterojunctions for Organic Electronics. Accounts of Chemical Research, 2021, 54, 4498-4507.	15.6	17
18	Bulk-Heterojunction with Long-Range Ordering: C ₆₀ Single-Crystal with Incorporated Conjugated Polymer Networks. Journal of the American Chemical Society, 2020, 142, 1630-1635.	13.7	30

#	Article	IF	CITATIONS
19	Texture Induced by Molecular Weight Dispersity: Polymorphism within Poly(L-lactic acid) Spherulites. Chinese Journal of Polymer Science (English Edition), 2020, 38, 1365-1373.	3.8	7
20	Incorporation of fluorescent microgels inside calcite single crystals. Giant, 2020, 3, 100023.	5.1	9
21	Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model. Energy and Environmental Science, 2020, 13, 635-645.	30.8	636
22	Ultrafast Electron Transfer Before Singlet Fission and Slow Triplet State Electron Transfer in Pentacene Single Crystal/C60 Heterostructure. Journal of Physical Chemistry A, 2020, 124, 4185-4192.	2.5	11
23	Highly Efficient Guanidiniumâ€Based Quasi 2D Perovskite Solar Cells via a Twoâ€Step Postâ€Treatment Process. Small Methods, 2019, 3, 1900375.	8.6	59
24	Functional delivery vehicle of organic nanoparticles in inorganic crystals. Chinese Chemical Letters, 2019, 30, 2351-2354.	9.0	15
25	Organic Heterojunctions Formed by Interfacing Two Single Crystals from a Mixed Solution. Journal of the American Chemical Society, 2019, 141, 10007-10015.	13.7	31
26	Patterning the Internal Structure of Single Crystals by Gel Incorporation. Journal of Physical Chemistry C, 2019, 123, 13147-13153.	3.1	15
27	Overestimation of Carrier Mobility in Organic Thin Film Transistors Due to Unaccounted Fringe Currents. ACS Applied Electronic Materials, 2019, 1, 379-388.	4.3	63
28	A <i>peri</i> à€Xanthenoxanthene Centered Columnarâ€Stacking Organic Semiconductor for Efficient, Photothermally Stable Perovskite Solar Cells. Chemistry - A European Journal, 2019, 25, 945-948.	3.3	21
29	Electron transport at the interface of organic semiconductors and hydroxyl-containing dielectrics. Journal of Materials Chemistry C, 2018, 6, 12001-12005.	5.5	13
30	Self-Healing Electronic Materials for a Smart and Sustainable Future. ACS Applied Materials & Samp; Interfaces, 2018, 10, 15331-15345.	8.0	170
31	Thioether- and sulfone-functionalized dibenzopentalenes as n-channel semiconductors for organic field-effect transistors. Journal of Materials Chemistry C, 2018, 6, 5420-5426.	5.5	29
32	Pbl ₂ band gap engineering by gel incorporation. Materials Chemistry Frontiers, 2018, 2, 362-368.	5.9	11
33	Polymer single crystal dielectrics for organic field-effect transistors. Polymer, 2018, 137, 255-260.	3.8	17
34	Zoneâ€Annealingâ€Assisted Solventâ€Free Processing of Complementary Semiconducting Polymer Blends for Organic Fieldâ€Effect Transistors. Advanced Electronic Materials, 2018, 4, 1700414.	5.1	9
35	Communicating Two States in Perovskite Revealed by Time-Resolved Photoluminescence Spectroscopy. Scientific Reports, 2018, 8, 16482.	3.3	18
36	Lateral Polymer Photodetectors Using Silver Nanoparticles Promoted PffBT4T-2OD:PC61BM Composite. ACS Photonics, 2018, 5, 4650-4659.	6.6	20

#	Article	IF	Citations
37	Perovskite/Organic Bulkâ€Heterojunction Integrated Ultrasensitive Broadband Photodetectors with High Nearâ€Infrared External Quantum Efficiency over 70%. Small, 2018, 14, e1802349.	10.0	52
38	Assessing the synergy effect of additive and matrix on single-crystal growth: Morphological revolution resulted from gel-mediated enhancement on CIT-calcite interaction. Chinese Chemical Letters, 2018, 29, 1296-1300.	9.0	6
39	The degree of crystallinity exhibiting a spatial distribution in polymer films. European Polymer Journal, 2018, 107, 303-307.	5.4	20
40	Visualizing the toughening origins of gel-grown calcite single-crystal composites. Chinese Chemical Letters, 2018, 29, 1666-1670.	9.0	12
41	Shape change of calcite single crystals to accommodate interfacial curvature: Crystallization in presence of Mg 2+ ions and agarose gel-networks. Chinese Chemical Letters, 2017, 28, 857-862.	9.0	8
42	Preparation of Singleâ€Crystalline Heterojunctions for Organic Electronics. Advanced Materials, 2017, 29, 1606101.	21.0	82
43	Electron acceptors with varied linkages between perylene diimide and benzotrithiophene for efficient fullerene-free solar cells. Journal of Materials Chemistry A, 2017, 5, 9396-9401.	10.3	60
44	Enhanced performance of field-effect transistors based on C60 single crystals with conjugated polyelectrolyte. Science China Chemistry, 2017, 60, 490-496.	8.2	8
45	Long-range ordering of composites for organic electronics: TIPS-pentacene single crystals with incorporated nano-fibers. Chinese Chemical Letters, 2017, 28, 2121-2124.	9.0	20
46	Extended Ladderâ€Type Benzo[<i>k</i>]tetrapheneâ€Derived Oligomers. Angewandte Chemie - International Edition, 2017, 56, 13727-13731.	13.8	46
47	Symmetry Breaking in Side Chains Leading to Mixed Orientations and Improved Charge Transport in Isoindigo- <i>alt</i> >-Bithiophene Based Polymer Thin Films. ACS Applied Materials & Enterfaces, 2017, 9, 25426-25433.	8.0	58
48	4,5,9,10â€Pyrene Diimides: A Family of Aromatic Diimides Exhibiting High Electron Mobility and Twoâ€Photon Excited Emission. Angewandte Chemie - International Edition, 2017, 56, 13031-13035.	13.8	86
49	4,5,9,10â€Pyrene Diimides: A Family of Aromatic Diimides Exhibiting High Electron Mobility and Twoâ€Photon Excited Emission. Angewandte Chemie, 2017, 129, 13211-13215.	2.0	27
50	Complementary Semiconducting Polymer Blends: Influence of Side Chains of Matrix Polymers. Macromolecules, 2017, 50, 6202-6209.	4.8	23
51	Design of charge transporting grids for efficient ITO-free flexible up-scaled organic photovoltaics. Materials Chemistry Frontiers, 2017, 1, 304-309.	5.9	18
52	Visibleâ€Light Ultrasensitive Solutionâ€Prepared Layered Organic–Inorganic Hybrid Perovskite Fieldâ€Effect Transistor. Advanced Optical Materials, 2017, 5, 1600539.	7.3	78
53	Extended Ladderâ€Type Benzo[k]tetrapheneâ€Derived Oligomers. Angewandte Chemie, 2017, 129, 13915-1391	12. 0	13
54	Alignment and patterning of organic single crystals for field-effect transistors. Chinese Chemical Letters, 2016, 27, 1421-1428.	9.0	32

#	Article	IF	CITATIONS
55	Nanoparticles Incorporated inside Single-Crystals: Enhanced Fluorescent Properties. Chemistry of Materials, 2016, 28, 7537-7543.	6.7	52
56	Electron transport in solution-grown TIPS-pentacene single crystals: Effects of gate dielectrics and polar impurities. Chinese Chemical Letters, 2016, 27, 1781-1787.	9.0	14
57	Constructing bulk-contact inside single crystals of organic semiconductors through gel incorporation. CrystEngComm, 2016, 18, 800-806.	2.6	14
58	Microfluidic fabrication of cholesteric liquid crystal core–shell structures toward magnetically transportable microlasers. Lab on A Chip, 2016, 16, 1206-1213.	6.0	34
59	Solution-grown aligned crystals of diketopyrrolopyrroles (DPP)-based small molecules: Rough surfaces and relatively low charge mobility. Chinese Chemical Letters, 2016, 27, 523-526.	9.0	19
60	Single-crystalline lead halide perovskite arrays for solar cells. Journal of Materials Chemistry A, 2016, 4, 1214-1217.	10.3	49
61	Boosting the electron mobility of solution-grown organic single crystals via reducing the amount of polar solvent residues. Materials Horizons, 2016, 3, 119-123.	12.2	64
62	Solutionâ€Grown Organic Singleâ€Crystal Fieldâ€Effect Transistors with Ultrahigh Response to Visibleâ€Blind and Deep UV Signals. Advanced Electronic Materials, 2015, 1, 1500136.	5.1	39
63	Gel-incorporated PbS and PbI2 single-crystals. Chinese Chemical Letters, 2015, 26, 504-508.	9.0	19
64	Ambipolar charge transport of TIPS-pentacene single-crystals grown from non-polar solvents. Materials Horizons, 2015, 2, 344-349.	12.2	59
65	Solutionâ€Grown Organic Singleâ€Crystalline Donor–Acceptor Heterojunctions for Photovoltaics. Angewandte Chemie, 2015, 127, 970-974.	2.0	11
66	Large-scale fabrication of field-effect transistors based on solution-grown organic single crystals. Science Bulletin, 2015, 60, 1122-1127.	9.0	20
67	Polydopamine-Coated Porous Substrates as a Platform for Mineralized \hat{I}^2 -FeOOH Nanorods with Photocatalysis under Sunlight. ACS Applied Materials & Early: Interfaces, 2015, 7, 11567-11574.	8.0	150
68	Design of a versatile interconnecting layer for highly efficient series-connected polymer tandem solar cells. Energy and Environmental Science, 2015, 8, 1712-1718.	30.8	101
69	Interfacing Solutionâ€Grown C ₆₀ and (3â€Pyrrolinium)(CdCl ₃) Single Crystals for Highâ€Mobility Transistorâ€Based Memory Devices. Advanced Materials, 2015, 27, 4476-4480.	21.0	48
70	Gel network incorporation into single crystals grown by decomplexation method. CrystEngComm, 2015, 17, 8113-8118.	2.6	6
71	Solutionâ€Grown Organic Singleâ€Crystalline Donor–Acceptor Heterojunctions for Photovoltaics. Angewandte Chemie - International Edition, 2015, 54, 956-960.	13.8	65
72	Functionalizing Single Crystals: Incorporation of Nanoparticles Inside Gelâ€Grown Calcite Crystals. Angewandte Chemie - International Edition, 2014, 53, 4127-4131.	13.8	69

#	Article	IF	Citations
73	Synthetic polymer/singleâ€crystal composite. Polymers for Advanced Technologies, 2014, 25, 1189-1194.	3.2	10
74	Crystal growth and characterization of fluorinated perylene diimides. Chemical Research in Chinese Universities, 2014, 30, 63-67.	2.6	4
75	Low Cost Universal Highâ€ <i>k</i> Dielectric for Solution Processing and Thermal Evaporation Organic Transistors. Advanced Materials Interfaces, 2014, 1, 1300119.	3.7	15
76	Solution-grown aligned C60 single-crystals for field-effect transistors. Journal of Materials Chemistry C, 2014, 2, 3617.	5.5	46
77	Low temperature solution processed planar heterojunction perovskite solar cells with a CdSe nanocrystal as an electron transport/extraction layer. Journal of Materials Chemistry C, 2014, 2, 9087-9090.	5.5	85
78	Gel network incorporation into single-crystals: effects of gel structures and crystal–gel interaction. CrystEngComm, 2014, 16, 6901.	2.6	18
79	Solutionâ€Grown Organic Singleâ€Crystalline pâ€n Junctions with Ambipolar Charge Transport. Advanced Materials, 2013, 25, 5762-5766.	21.0	112
80	Câ€"H activation: making diketopyrrolopyrrole derivatives easily accessible. Journal of Materials Chemistry A, 2013, 1, 2795.	10.3	118
81	Toward high-mobility organic field-effect transistors: Control of molecular packing and large-area fabrication of single-crystal-based devices. MRS Bulletin, 2013, 38, 34-42.	3.5	57
82	High-Mobility Field-Effect Transistors from Large-Area Solution-Grown Aligned C ₆₀ Single Crystals. Journal of the American Chemical Society, 2012, 134, 2760-2765.	13.7	481
83	Effect of Solvent-Assisted Nanoscaled Organo-Gels on Morphology and Performance of Organic Solar Cells. Journal of Physical Chemistry C, 2012, 116, 16893-16900.	3.1	18
84	Highâ€Performance Transistors and Complementary Inverters Based on Solutionâ€Grown Aligned Organic Singleâ€Crystals. Advanced Materials, 2012, 24, 2588-2591.	21.0	129
85	Crystal Growth of Calcium Carbonate in Hydrogels as a Model of Biomineralization. Advanced Functional Materials, 2012, 22, 2891-2914.	14.9	188
86	Hydrogels: Crystal Growth of Calcium Carbonate in Hydrogels as a Model of Biomineralization (Adv.) Tj ETQq0 0	0 rgBT /0v	verlock 10 Tf
87	Gel incorporation inside of organic single crystals grown in agarose hydrogels. CrystEngComm, 2011, 13, 1060-1062.	2.6	32
88	Calcite Prisms from Mollusk Shells (<i>Atrina Rigida</i>): Swissâ€cheeseâ€like Organic–Inorganic Singleâ€crystal Composites. Advanced Functional Materials, 2011, 21, 2028-2034.	14.9	104
89	Calcite Growth in Hydrogels: Assessing the Mechanism of Polymerâ€Network Incorporation into Single Crystals. Advanced Materials, 2009, 21, 470-473.	21.0	125
90	Visualizing the 3D Internal Structure of Calcite Single Crystals Grown in Agarose Hydrogels. Science, 2009, 326, 1244-1247.	12.6	257

Han-Ying Li

#	Article	IF	CITATIONS
91	Porous calcite single crystals grown from a hydrogel medium. CrystEngComm, 2007, 9, 1153.	2.6	63
92	Hydrogels Coupled with Self-Assembled Monolayers:Â An in Vitro Matrix To Study Calcite Biomineralization. Journal of the American Chemical Society, 2007, 129, 5480-5483.	13.7	104
93	A facile room-temperature chemical reduction method to TiO2@CdS core/sheath heterostructure nanowires. Journal of Materials Chemistry, 2004, 14, 1203.	6.7	101
94	Poly(vinyl alcohol)-Encapsulated Hydrophilic Carbon Black Nanoparticles Free from Aggregation. Macromolecular Rapid Communications, 2003, 24, 715-717.	3.9	23
95	Effect of Aromatic Solvents Residuals on Electron Mobility of Organic Single Crystals. Advanced Electronic Materials, 0, , 2200158.	5.1	2