
Yongting Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5191920/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The biphasic function of microglia in ischemic stroke. Progress in Neurobiology, 2017, 157, 247-272.	5.7	529
2	M2 microglia-derived exosomes protect the mouse brain from ischemia-reperfusion injury via exosomal miR-124. Theranostics, 2019, 9, 2910-2923.	10.0	301
3	Vascular remodeling after ischemic stroke: Mechanisms and therapeutic potentials. Progress in Neurobiology, 2014, 115, 138-156.	5.7	263
4	CXCR4 Antagonist AMD3100 Protects Blood–Brain Barrier Integrity and Reduces Inflammatory Response After Focal Ischemia in Mice. Stroke, 2013, 44, 190-197.	2.0	182
5	Metformin attenuates blood-brain barrier disruption in mice following middle cerebral artery occlusion. Journal of Neuroinflammation, 2014, 11, 177.	7.2	152
6	Mesenchymal Stem Cells Maintain Blood-Brain Barrier Integrity by Inhibiting Aquaporin-4 Upregulation After Cerebral Ischemia. Stem Cells, 2014, 32, 3150-3162.	3.2	138
7	MicroRNA-210 as a novel blood biomarker in acute cerebral ischemia. Frontiers in Bioscience - Elite, 2011, E3, 1265-1272.	1.8	131
8	MauG, a Novel Diheme Protein Required for Tryptophan Tryptophylquinone Biogenesis. Biochemistry, 2003, 42, 7318-7325.	2.5	123
9	Melatonin Pretreatment Improves the Survival and Function of Transplanted Mesenchymal Stem Cells after Focal Cerebral Ischemia. Cell Transplantation, 2014, 23, 1279-1291.	2.5	112
10	Microglia exacerbate white matter injury via complement C3/C3aR pathway after hypoperfusion. Theranostics, 2020, 10, 74-90.	10.0	106
11	MRI/SPECT/Fluorescent Triâ€Modal Probe for Evaluating the Homing and Therapeutic Efficacy of Transplanted Mesenchymal Stem Cells in a Rat Ischemic Stroke Model. Advanced Functional Materials, 2015, 25, 1024-1034.	14.9	102
12	MicroRNA-29b is a Therapeutic Target in Cerebral Ischemia Associated with Aquaporin 4. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 1977-1984.	4.3	101
13	Netrin-1 Hyperexpression in Mouse Brain Promotes Angiogenesis and Long-Term Neurological Recovery After Transient Focal Ischemia. Stroke, 2012, 43, 838-843.	2.0	97
14	Roles of Chemokine CXCL12 and its Receptors in Ischemic Stroke. Current Drug Targets, 2012, 13, 166-172.	2.1	92
15	M2 microglial small extracellular vesicles reduce glial scar formation <i>via</i> the miR-124/STAT3 pathway after ischemic stroke in mice. Theranostics, 2021, 11, 1232-1248.	10.0	90
16	Neural Stem Cell Protects Aged Rat Brain from Ischemia–Reperfusion Injury through Neurogenesis and Angiogenesis. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 1138-1147.	4.3	88
17	Stroke subtype-dependent synapse elimination by reactive gliosis in mice. Nature Communications, 2021, 12, 6943.	12.8	84
18	Blood-Brain Barrier Disruption Induced Cognitive Impairment Is Associated With Increase of Inflammatory Cytokine. Frontiers in Aging Neuroscience, 2018, 10, 129.	3.4	79

#	Article	IF	CITATIONS
19	Metformin promotes focal angiogenesis and neurogenesis in mice following middle cerebral artery occlusion. Neuroscience Letters, 2014, 579, 46-51.	2.1	78
20	MicroRNA-126-3p/-5p Overexpression Attenuates Blood-Brain Barrier Disruption in a Mouse Model of Middle Cerebral Artery Occlusion. Stroke, 2020, 51, 619-627.	2.0	78
21	Further Insights into Quinone Cofactor Biogenesis:Â Probing the Role ofmauGin Methylamine Dehydrogenase Tryptophan Tryptophylquinone Formationâ€. Biochemistry, 2004, 43, 5494-5502.	2.5	76
22	Postacute Stromal Cell–Derived Factor-1α Expression Promotes Neurovascular Recovery in Ischemic Mice. Stroke, 2014, 45, 1822-1829.	2.0	76
23	Macrophage depletion reduced brain injury following middle cerebral artery occlusion in mice. Journal of Neuroinflammation, 2016, 13, 38.	7.2	76
24	Activated regulatory T cell regulates neural stem cell proliferation in the subventricular zone of normal and ischemic mouse brain through interleukin 10. Frontiers in Cellular Neuroscience, 2015, 9, 361.	3.7	74
25	Formation of Amyloid Fibrils In Vitro from Partially Unfolded Intermediates of Human \hat{I}^3C -Crystallin. , 2010, 51, 672.		70
26	Silica-coated superparamagnetic iron oxide nanoparticles targeting ofÂEPCs in ischemic brain injury. Biomaterials, 2013, 34, 4982-4992.	11.4	65
27	Dl-3-N-butylphthalide attenuates ischemic reperfusion injury by improving the function of cerebral artery and circulation. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 2011-2021.	4.3	62
28	MicroRNA-126 Regulates Angiogenesis and Neurogenesis in a Mouse Model of Focal Cerebral Ischemia. Molecular Therapy - Nucleic Acids, 2019, 16, 15-25.	5.1	61
29	Increase of circulating miR-223 and insulin-like growth factor-1 is associated with the pathogenesis of acute ischemic stroke in patients. BMC Neurology, 2014, 14, 77.	1.8	60
30	Evidence for Redox Cooperativity betweenc-Type Hemes of MauG Which Is Likely Coupled to Oxygen Activation during Tryptophan Tryptophylquinone Biosynthesisâ€. Biochemistry, 2006, 45, 821-828.	2.5	59
31	Hypoxia Response Element-Regulated MMP-9 Promotes Neurological Recovery via Glial Scar Degradation and Angiogenesis in Delayed Stroke. Molecular Therapy, 2017, 25, 1448-1459.	8.2	59
32	The Structure of the Cataract-Causing P23T Mutant of Human γD-Crystallin Exhibits Distinctive Local Conformational and Dynamic Changes,. Biochemistry, 2009, 48, 2597-2609.	2.5	57
33	High MR sensitive fluorescent magnetite nanocluster for stem cell tracking in ischemic mouse brain. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 1009-1019.	3.3	53
34	Effect of HMGB1 on the Paracrine Action of EPC Promotes Post-Ischemic Neovascularization in Mice. Stem Cells, 2014, 32, 2679-2689.	3.2	53
35	MauG-Dependent in Vitro Biosynthesis of Tryptophan Tryptophylquinone in Methylamine Dehydrogenase. Journal of the American Chemical Society, 2005, 127, 8258-8259.	13.7	52
36	cxcl12-engineered endothelial progenitor cells enhance neurogenesis and angiogenesis after ischemic brain injury in mice. Stem Cell Research and Therapy, 2018, 9, 139.	5.5	51

#	Article	IF	CITATIONS
37	Effect of Suture Properties on Stability of Middle Cerebral Artery Occlusion Evaluated by Synchrotron Radiation Angiography. Stroke, 2012, 43, 888-891.	2.0	50
38	Neuroprotection and Sensorimotor Functional Improvement by Curcumin after Intracerebral Hemorrhage in Mice. Journal of Neurotrauma, 2011, 28, 2513-2521.	3.4	49
39	Netrin-1 Overexpression Promotes White Matter Repairing and Remodeling after Focal Cerebral Ischemia in Mice. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 1921-1927.	4.3	46
40	Endothelial progenitor cells transplantation attenuated blood-brain barrier damage after ischemia in diabetic mice via HIF-1α. Stem Cell Research and Therapy, 2017, 8, 163.	5.5	46
41	Aggregation of Trp > Glu point mutants of human gammaâ€Ð crystallin provides a model for hereditar or UVâ€induced cataract. Protein Science, 2016, 25, 1115-1128.	У ₋₆	44
42	Pro-inflammatory cytokine network in peripheral inflammation response to cerebral ischemia. Neuroscience Letters, 2013, 548, 4-9.	2.1	41
43	Neurovascular Recovery via Cotransplanted Neural and Vascular Progenitors Leads to Improved Functional Restoration after Ischemic Stroke in Rats. Stem Cell Reports, 2014, 3, 101-114.	4.8	40
44	M2 microglia-derived extracellular vesicles promote white matter repair and functional recovery via miR-23a-5p after cerebral ischemia in mice. Theranostics, 2022, 12, 3553-3573.	10.0	40
45	<i>CXCL12</i> Gene Therapy Ameliorates Ischemia-Induced White Matter Injury in Mouse Brain. Stem Cells Translational Medicine, 2015, 4, 1122-1130.	3.3	39
46	Cocktail Blood Biomarkers: Prediction of Clinical Outcomes in Patients with Acute Ischemic Stroke. European Neurology, 2013, 69, 68-75.	1.4	37
47	MicroRNAs in Cerebral Ischemia. Stroke Research and Treatment, 2013, 2013, 1-6.	0.8	37
48	CLARITY for High-resolution Imaging and Quantification of Vasculature in the Whole Mouse Brain. , 2018, 9, 262.		37
49	Microbubble-based synchrotron radiation phase contrast imaging: basic study and angiography applications. Physics in Medicine and Biology, 2011, 56, 3503-3512.	3.0	35
50	Optimizing Suture Middle Cerebral Artery Occlusion Model in C57BL/6 Mice Circumvents Posterior Communicating Artery Dysplasia. Journal of Neurotrauma, 2012, 29, 1499-1505.	3.4	34
51	Micro <scp>RNA</scp> â€137 and micro <scp>RNA</scp> â€195* inhibit vasculogenesis in brain arteriovenous malformations. Annals of Neurology, 2017, 82, 371-384.	5.3	33
52	Ubiquitin Proteasome Pathway–Mediated Degradation of Proteins: Effects Due to Site-Specific Substrate Deamidation. , 2010, 51, 4164.		30
53	Optogenetic Inhibition of Striatal GABAergic Neuronal Activity Improves Outcomes After Ischemic Brain Injury. Stroke, 2017, 48, 3375-3383.	2.0	29
54	Rapamycin Increases Collateral Circulation in Rodent Brain after Focal Ischemia as detected by Multiple Modality Dynamic Imaging. Theranostics, 2019, 9, 4923-4934.	10.0	28

#	Article	IF	CITATIONS
55	Optical inhibition of striatal neurons promotes focal neurogenesis and neurobehavioral recovery in mice after middle cerebral artery occlusion. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 837-847.	4.3	27
56	High-efficiency generation of induced pluripotent mesenchymal stem cells from human dermal fibroblasts using recombinant proteins. Stem Cell Research and Therapy, 2016, 7, 99.	5.5	26
57	Farnesoid X receptor knockout protects brain against ischemic injury through reducing neuronal apoptosis in mice. Journal of Neuroinflammation, 2020, 17, 164.	7.2	26
58	Netrin-1 attenuates brain injury after middle cerebral artery occlusion via downregulation of astrocyte activation in mice. Journal of Neuroinflammation, 2018, 15, 268.	7.2	25
59	Differences of Circulating Inflammatory Markers between Large- and Small Vessel Disease in Patients with Acute Ischemic Stroke. International Journal of Medical Sciences, 2013, 10, 1399-1405.	2.5	24
60	Stem Cell-Mediated Gene Delivering for the Treatment of Cerebral Ischemia: Progress and Prospectives. Current Drug Targets, 2013, 14, 81-89.	2.1	23
61	Hypoxia-controlled matrix metalloproteinase-9 hyperexpression promotes behavioral recovery after ischemia. Neuroscience Bulletin, 2015, 31, 550-560.	2.9	23
62	Mesenchymal Stem Cells Attenuated Blood-Brain Barrier Disruption via Downregulation of Aquaporin-4 Expression in EAE Mice. Molecular Neurobiology, 2020, 57, 3891-3901.	4.0	23
63	Ischemia-induced Angiogenesis is Attenuated in Aged Rats. , 2016, 7, 326.		22
64	Monocyte-derived SDF1 supports optic nerve regeneration and alters retinal ganglion cells' response to Pten deletion. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2113751119.	7.1	22
65	Overexpression of netrin-1 improves neurological outcomes in mice following transient middle cerebral artery occlusion. Frontiers of Medicine, 2011, 5, 86-93.	3.4	19
66	Micro-Computed Tomography for Hemorrhage Disruption of Mouse Brain Vasculature. Translational Stroke Research, 2012, 3, 174-179.	4.2	19
67	Optogenetic Inhibition of Striatal Neuronal Activity Improves the Survival of Transplanted Neural Stem Cells and Neurological Outcomes after Ischemic Stroke in Mice. Stem Cells International, 2017, 2017, 1-11.	2.5	19
68	Oligodendrocyte precursor cell transplantation promotes angiogenesis and remyelination via Wnt/ β -catenin pathway in a mouse model of middle cerebral artery occlusion. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 757-770.	4.3	19
69	Endothelial progenitor cell transplantation alleviated ischemic brain injury via inhibiting C3/C3aR pathway in mice. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 2374-2386.	4.3	17
70	Targeting Water in the Brain: Role of Aquaporin-4 in Ischemic Brain Edema. Current Drug Targets, 2019, 20, 748-755.	2.1	17
71	DL-3n-Butylphthalide Improves Blood–Brain Barrier Integrity in Rat After Middle Cerebral Artery Occlusion. Frontiers in Cellular Neuroscience, 2020, 14, 610714.	3.7	15
72	Methodology To Probe Subunit Interactions in Ribonucleotide Reductases. Biochemistry, 2008, 47, 13046-13055.	2.5	14

#	Article	IF	CITATIONS
73	Fingolimod Inhibits Inflammation but Exacerbates Brain Edema in the Acute Phases of Cerebral Ischemia in Diabetic Mice. Frontiers in Neuroscience, 2020, 14, 842.	2.8	14
74	Oligodendrocyte Precursor Cells Transplantation Improves Stroke Recovery <i>via</i> Oligodendrogenesis, Neurite Growth and Synaptogenesis. , 2021, 12, 2096.		14
75	Extracellular vesicles from adipose-derived stem cells promote microglia M2 polarization and neurological recovery in a mouse model of transient middle cerebral artery occlusion. Stem Cell Research and Therapy, 2022, 13, 21.	5.5	14
76	A Single Methionine Residue Dictates the Kinetic Mechanism of Interprotein Electron Transfer from Methylamine Dehydrogenase to Amicyanin [,] . Biochemistry, 2007, 46, 11137-11146.	2.5	13
77	Therapeutic Benefit of Bone Marrow–Derived Endothelial Progenitor Cell Transplantation after Experimental Aneurysm Embolization with Coil in Rats. PLoS ONE, 2014, 9, e90069.	2.5	13
78	Monomeric CXCL12 outperforms its dimeric and wild type variants in the promotion of human endothelial progenitor cells' function. Biochemical and Biophysical Research Communications, 2017, 488, 303-310.	2.1	13
79	Use of Indirect Site-directed Mutagenesis to Alter the Substrate Specificity of Methylamine Dehydrogenase. Journal of Biological Chemistry, 2002, 277, 4119-4122.	3.4	11
80	cxcl12 gene engineered endothelial progenitor cells further improve the functions of oligodendrocyte precursor cells. Experimental Cell Research, 2018, 367, 222-231.	2.6	11
81	Optogenetic translocation of protons out of penumbral neurons is protective in a rodent model of focal cerebral ischemia. Brain Stimulation, 2020, 13, 881-890.	1.6	11
82	Collateral circulation prevents masticatory muscle impairment in rat middle cerebral artery occlusion model. Journal of Synchrotron Radiation, 2014, 21, 1314-1318.	2.4	10
83	Development of functionalin vivoimaging of cerebral lenticulostriate artery using novel synchrotron radiation angiography. Physics in Medicine and Biology, 2015, 60, 1655-1665.	3.0	10
84	Hyperexpressed Netrin-1 Promoted Neural Stem Cells Migration in Mice after Focal Cerebral Ischemia. Frontiers in Cellular Neuroscience, 2016, 10, 223.	3.7	9
85	The Effect of Myosin Light Chain Kinase on the Occurrence and Development of Intracranial Aneurysm. Frontiers in Cellular Neuroscience, 2018, 12, 416.	3.7	9
86	Dynamic Detection of Thrombolysis in Embolic Stroke Rats by Synchrotron Radiation Angiography. Translational Stroke Research, 2019, 10, 695-704.	4.2	8
87	Optogenetic Excitation of Ipsilesional Sensorimotor Neurons is Protective in Acute Ischemic Stroke: A Laser Speckle Imaging Study. IEEE Transactions on Biomedical Engineering, 2019, 66, 1372-1379.	4.2	8
88	Real-time imaging of mouse lenticulostriate artery following brain ischemia. Frontiers in Bioscience - Elite, 2013, E5, 517-524.	1.8	7
89	Simultaneous Imaging of Cerebrovascular Structure and Function in Hypertensive Rats Using Synchrotron Radiation Angiography. Frontiers in Aging Neuroscience, 2017, 9, 359.	3.4	7
90	Synthesis of nanostructured barium phosphate and its application in micro-computed tomography of mouse brain vessels in ex vivo. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	5

#	Article	IF	CITATIONS
91	Microangiography in Living Mice Using Synchrotron Radiation. , 2010, , .		3
92	Stimulation of Cerebral Angiogenesis by Gene Delivery. Methods in Molecular Biology, 2014, 1135, 317-329.	0.9	3
93	Effect of ischaemic brain injury on sexual function in adult mice. Stroke and Vascular Neurology, 2016, 1, 127-132.	3.3	2
94	Stem Cells: MRI/SPECT/Fluorescent Tri-Modal Probe for Evaluating the Homing and Therapeutic Efficacy of Transplanted Mesenchymal Stem Cells in a Rat Ischemic Stroke Model (Adv. Funct. Mater.) Tj ETQq0 () (Tagið T	Oveolock 10 Ti
95	Visualization of soft tissues by highly sensitive X-ray crystal analyzer-based multi diffraction enhanced imaging. Japanese Journal of Applied Physics, 2015, 54, 096701.	1.5	Ο
96	A biosafety evaluation of synchrotron radiation X-ray to skin and bone marrow: single dose irradiation study of rats and macaques. International Journal of Radiation Biology, 2017, 93, 637-645.	1.8	0
97	Reduction of Brain Injury After Stroke in Hyperglycemic Rats via Fasudil Pretreatment. Journal of Shanghai Jiaotong University (Science), 2019, 24, 723-731.	0.9	Ο